

Neural Link Prediction for Multi-Modal Knowledge Graphs

Mathias Niepert and Alberto Garcia-Duran

NEC Labs Europe Heidelberg

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Tensor Factorization problem

- One adjacency matrix per relationship
- This is not new!

Latent Models

- Scoring function operating on latent space
- At a high level, relationships can be seen as operations/transformations operating on the entities
- Parameter sharing between head and tail arguments

Relational Models

- Extraction of relational features (e.g. via rule miners such as AMIE+)
- Scoring function operating on relational features

Evaluation Metrics

- Queries of the type (h, r, ?) or (?, r, t)
- MRR is the most informative evaluation metric

 $\mathcal{A} \in \{0,1\}^{n \times n \times m}$

0 0

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Failing with Latent and Relational Models

"Compositionality" [Guu et al., 2016]

• They perform random walks in the KG and recursively apply the same transformation

Perform two random walks in the graph:

(John, has-ancestor, lives-in, LA) (John, born-in, LA) Apply the same transformation recursively (e.g. TransE):

If this happens this very often, then:

This amounts to learn the horn rule:

Let's perform two more random walks:

This happens this very often, then:

Only possible if the embedding for ancestor is **<u>0</u>**...

I... but this would collapse the embeddings of John, Mary and Peter to the same point. Not good...

Rome

Pete

lives-in

has-ancestor

has-ancestor

Mary

Failing with Latent and Relational Models Relational Models

For relational models to learn the predictive power of paths is easy.

• As long as we have enough examples of each path

But the number of possible paths grows exponentially with the number of relationships and length of the path

has-ancestor ^ has-ancestor has-ancestor ^ has-ancestor ^ lives-in has-ancestor ^ lives-in (born-in)⁻¹ ^ has-ancestor (born-in)⁻¹ ^ has-ancestor ^ has-ancestor

Try this \implies

Neural Link Prediction for Multi-Modal Knowledge Graphs

Failing with Latent and Relational Models Relational Models

We cannot mine all possible paths in a graph

No paths, no party!

[Neelankatan et al.,2015; Gardner et al.,2015] used relational features other than paths

- Path-bigram features
- One-sided features

For medium/large KGs the space of possible relational features is huge

• AMIE fails to obtain rules whose bodies are of up to 2 atoms in the Decagon data set (20k entities and 1k relation types) [Zitnik et al., 2018]

Latent methods learn (at least) entity type information

Latent methods very helpful for sparse KGs

Latent models fail at learning very simple horn rules

Dichotomy of relational features: either work perfectly or fail completely (random)

Relational features outperform embedding methods on KBs with dense relational structure

		Ra	ank
Query	Correct entity	ΤE	GM
nationality(?, US)	W. H. Macy	2	233
born_here(HK, ?)	W. Chau-sang	5	135
contains(?, Curtis-Inst)	USA	32	1
children(?, H. Roshan)	R. Roshan	26	1

Can we use latent models in conjunction with "simple" relational features?

Acknowledgement: There are a number of recent approaches [Rocktaschel et al.,2015; Guo et al.,2016; Minervini et al.,2017] that combine relational and latent representations by explicitly incorporating known logical rules into the embedding learning formulation

[Guu et al.,2016] implicitly learns these logical rules! But we have learned that latent models have problem to learn a simple rule like:

has-ancestor ^ has-ancestor -> has-ancestor

In general, they have problems to learn rules wherein the relationship of the head of the rule also appears in the body:

rel_1 ^ rel_2 -> rel_1 rel_1 + rel_2 \neq rel_1 (TransE) rel_1*rel_2 \neq rel_1 (distMult, RESCAL)

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Simple Link Prediction in KGs

Learn from all available information in the knowledge graph

Latent and Relational models only use graph structure information

[Wang et al.,2016; An et al.,2018] exploit textual information of entities and relationships

What about other data modalities?

KG is given as a set of observed triples of the form (h, r, t)

We aim to combine an arbitrary number of feature types F

KBIrn [Garcia-Duran et al.,2017a]: It is a product of experts approach wherein one expert is trained for each (relation type *r*, feature type *F*) pair

- We focus on latent, relational and numerical features
- Generally, we may have more than an expert for the same feature type

Product of Experts [Hinton,2000]:

$$p(\mathbf{d}|\theta_1...\theta_n) = \frac{\Pi_m p_m(\mathbf{d}|\theta_m)}{\sum_{\mathbf{c}} \Pi_m p_m(\mathbf{c}|\theta_m)}$$

where **c** indexes all possible vectors in the data space

From [Hinton,2000]:

"... so long as p_m is positive it does not need to be a probability at all ..."

Simple Link Prediction in KGs KBlrn: Latent Expert

We pick a latent model (e.g. distMult)

$$d = (h, r, t)$$

$$e_{h} e_{t} e_{r}$$

$$S(\left[, \right], \left[, \right] \right) = (\left[* \right]) \cdot \left[\right]$$

and force its output to be positive

$$f_{(\mathbf{r},\mathbf{L})}(\mathbf{d} \mid \boldsymbol{\theta}_{(\mathbf{r},\mathbf{L})}) = \exp((\mathbf{e}_{\mathbf{h}} * \mathbf{e}_{\mathbf{t}}) \cdot \mathbf{w}^{\mathbf{r}})$$

Simple Link Prediction in KGs KBlrn: Relational Expert

Horn rules whose bodies have up to 2 atoms

We use **AMIE+** for the mining of closed horn rules

Body of the Rule (Path)	Head of the Rule
$\exists x (h, contained by, x) \land (t, locations_in_this_time_zone, x)$	(h,time_zone,t)
$\exists x (t, prequel, x) \land (x, character, h)$	(h,character_in_film,t)
$\exists x (x, cause_of_death, h) \land (x, cause_of_death, t)$	(h,includes_causes_of_death,t)

"Bag-of-paths" for each relationship

Relational expert

hal expert:
$$d = (h, r, t)$$

 $f_{(r,R)}(d \mid \theta_{(r,R)}) = \exp\left(\mathbf{r}_{(h,t)} \cdot \mathbf{w}_{rel}^{r}\right)$

Neural Link Prediction for Multi-Modal Knowledge Graphs

Simple Link Prediction in KGs KBIrn: Latent and Relational Expert

Product of Experts:

$$p(\mathbf{d}|\theta_1...\theta_n) = \frac{\Pi_m p_m(\mathbf{d}|\theta_m)}{\sum_{\mathbf{c}} \Pi_m p_m(\mathbf{c}|\theta_m)}$$

KBlr:

$$p(\mathbf{d} \mid \theta_1, ..., \theta_n) = \frac{\prod_{\mathbf{F} \in \{\mathbf{R}, \mathbf{L}\}} f_{(\mathbf{r}, \mathbf{F})}(\mathbf{d} \mid \theta_{(\mathbf{r}, \mathbf{F})})}{\sum_{\mathbf{c}} \prod_{\mathbf{F} \in \{\mathbf{R}, \mathbf{L}\}} f_{(\mathbf{r}, \mathbf{F})}(\mathbf{c} \mid \theta_{(\mathbf{r}, \mathbf{F})}))}$$

Simple Link Prediction in KGs KBlrn: Learning

In practice this amounts to...

$$\mathsf{d}=(h, r, t)$$

NEO

- 1. Sample N negative triples per positive triple
- 2. Compute scores of embedding and relational model for each
- 3. Sum scores and apply *softmax* function
- 4. Apply categorical cross-entropy loss

Simple Link Prediction in KGs KBlrn: Performance

Competitive with more complex KB completion modelsFB15k, FB15k-237, FB122, WN18

Metrics: MR: Mean rank of correct triple MRR: Mean reciprocal rank Hits@1: Percentage of correct triples ranked 1 Hits@10: Percentage of correct triples ranked in the tope 10			FB MRR	615k-237 Hits@1	Hits@10
	TRANSE DISTMULT[27] COMPLEX[27] NODE+LINKFEAT[29]		19.1 20.1 23.7	10.6 11.2	37.6 38.8 36.0
	R-GCN+[27] ConvE[4]	330	24.8 30.1	15.3 22.0	41.7 45.8
	KBL KBR KBLR	231 2518 231	30.1 18.0 30.6	21.4 12.8 22.0	47.5 28.5 48.2

Numerical information is very common in knowledge bases (DBpedia, Freebase, YAGO, etc.)

Examples: geocoordinates, elevation, area, birth year, ...

Area • Metropolis • Metro Area rank	2,187.66 km ² (844.66 sq mi) 13,572 km ² (5,240 sq mi) 45th
Elevation	40 m (130 ft)
Population (July 3 • Metropolis	31, 2016) ^[3] 13,617,445
• Density	6,224.66/km ² (16,121.8/sq mi)
• Metro • Metro density • 23 Wards	37,800,000 2,662/km ² (6,890/sq mi) 8,967,665 (2015 per prefectural government)
Demonym(s)	江戸っ子 (Edokko), 東京人 (Tokyo-jin), 東京っ子 (Tokyokko), Tokyoite
GDP (Nominal; 20 • Total • Per capita	14) ^{[4][5]} \$2 trillion \$70,000

Tokyo

Simple Link Prediction in KGs

- How to learn from them?
 - \bullet Concatenate everything into a vector and pass it to whatever NN $\ensuremath{\textcircled{\text{S}}}$

Observation: even though numerical features are not distributed according to a normal distribution, usually the difference between the *head* and *tail* arguments is

Simple Link Prediction in KGs KBlrn: Numerical Expert

We use the difference values n_(h,t) and the fact that they often follow a normal distribution. Why?

$$n_{(h,t)} = n_h - n_t \qquad \qquad N(c, \sigma) = n_h - n_t \qquad \qquad n_t = n_h + N(c, \sigma)$$

Numerical Expert:

$$f_{(\mathbf{r},\mathbf{N})}(\mathbf{d} \mid \boldsymbol{\theta}_{(\mathbf{r},\mathbf{N})}) = \exp\left(\phi\left(\mathbf{n}_{(\mathbf{h},\mathbf{t})}\right) \cdot \mathbf{w}_{\mathtt{num}}^{\mathtt{r}}\right)$$

where

$$\phi\left(\mathbf{n}_{(\mathtt{h},\mathtt{t})}^{(i)}\right) = \exp\left(\frac{-||\mathbf{n}_{(\mathtt{h},\mathtt{t})}^{(i)} - c_i||_2^2}{\sigma_i^2}\right)$$

Learning from the residual of the underlying linear regression model!

The output of the RBF is a value between 0 and 1

Simple Link Prediction in KGs KBlrn: Training

Simple extension of previous model

Difference of numerical features + RBF layer

All parameters of the model are learned end-to-end

Simple Link Prediction in KGs KBlrn: Performance

Numerical features helpful for KB completion

Metrics:
MR: Mean rank of correct triple
MRR: Mean reciprocal rank
Hits@1: Percentage of correct triples ranked 1
Hits@10: Percentage of correct triples ranked in the tope 10

	FB15k-num				FB15	k-237-nun	1	
	MR	MRR	Hits@1	Hits@10	MR	MRR	Hits@1	Hits@10
TRANSE								
DISTMULT	39	72.6	62.1	89.7	195	26.4	16.4	47.3
	without numerical features							
KBL	39	72.6	62.1	89.7	195	26.4	16.4	47.3
KBR	399	84.7	81.6	90.1	3595	23.6	17.8	36.1
KBLR	28	85.3	80.3	92.4	232	29.3	19.7	49.2
	with numerical features							
KBLN	32	73.6	63.0	90.7	122	28.6	17.9	51.6
KBRN	68	84.0	80.6	90.0	600	26.1	19.3	39.7
KBLRN	25	85.9	81.0	92.9	121	31.4	21.2	52.3

Simple Link Prediction in KGs KBlrn: Performance

Let's have a deeper look at the relational expert:

	KI	Blr	KB	LRN
Relation	MRR	H@10	MRR	H@10
capital_of	5.7	13.6	14.6	18.2
spouse_of	4.4	0.0	7.9	0.0
influenced_by	7.3	20.9	9.9	26.8

What happens if we use a function other than a RBF:

φ	MRR	Hits@10
sign	29.7	50.1
RBF	31.4	52.3

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Simple Link Prediction in KGs

What about a KG of visual data?

VisualGenome [Krishna et al.,2015]

Simple Link Prediction in KGs

A KG where relationships hold between pairs of images?

We crawled images from search Engines using FB as a blueprint $\frac{Michael}{Michael}$

				inpiets			inages	
DB	Entities	Relations	Train	Validation	Test	Train	Validation	Test
ImageNet	21.841	18					14.197.122	2
VisualGenome	75.729	40.408		1.531.448			108.077	
FB15k	14.951	1.345	483.142	50.000	59.071	0	0	0
ImageGraph	14.870	1.330	460.406	47.533	56.071	411.306	201.832	216.793

NEC

Neural Link Prediction for Multi-Modal Knowledge Graphs

NEC

Zero-Shot: predicting relationships for new entities

NEC

Zero-Shot: predicting relationships for new entities

Zero-Shot: predicting relationships for new entities

NEC

Zero-Shot: predicting relationships for new entities

Simple Link Prediction in KGs

Image Graph [Onoro-Rubio et al.,2017]

- Acknowledgement: [Lonij et al.,2017]
- Function that learns latent representations from images

• Standard Scoring Functions

Simple Link Prediction in KGs

ImageGraph: Performance

Given a pair of **unseen images** for which we do not know their KG entities, determine the **relations** between these underlying entities

Performance Results:

Model	Median	Hits@1	Hits@10	MRR		
Baseline	35	3.7	26.5	0.104	Probability based	
DIFF	11	21.1	50.0	0.307	Metrics:	
MULT	8	15.5	54.3	0.282	Median – Median rank of the correct	
САТ	6	26.7	61.0	0.378	Hits@1 – Percentage of correct answers	
DIFF+1HL	8	22.6	55.7	0.333	Hits@10 – Percentage of correct answers	
MULT+1HL	9	14.8	53.4	0.273	ranked in the tope 10 MRR – Mean reciprocal rank	
CAT+1HL	6	25.3	60.0	0.365	+ 1HL (additional hidden laver)	

Composition function op: difference (DIFF), multiplication (MULT), concatenation (CAT)

Neural Link Prediction for Multi-Modal Knowledge Graphs

NE(

Simple Link Prediction in KGs Summary

Advantages & Disadvantages of:

- Latent models
- Relational models

KBlrn:

- A learning framework that combines multiple experts
- Reasoning with numerical information

Image Graph:

- A KG enriched with visual information
- Novel visual query types
- Zero-shot learning

5/10 minutes break

Neural Link Prediction for Multi-Modal Knowledge Graphs

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Research on link prediction has mainly focused on static KGs.

What about time information?

Freebase, Yago, DBpedia... They all have time information in the original dumps

yagoDateFacts All facts of YAGO that contain dates	Preview	Download TTL	Download TSV
yagoFacts All facts of YAGO that hold between instances	Preview	Download TTL	Download TSV

Example of Temporal KG

<Jamie Lawrence> <Sunderland A.F.C.> <occursUntil> <playsFor> "1994-##-##' <Jeph Loeb> <created> <Lost_(TV_series)> <Bradley Johnson> <plavsFor> <Leeds United F.C.> <occursSince> "2008-##-##" <Bradley Johnson> <playsFor> <Leeds United F.C.> <occursUntil> "2011-##-##" <David Hibbert> <playsFor> <Shrewsbury Town F.C.> <occursSince> "2007-##-##" <Shrewsbury_Town_F.C.> <occursUntil> <David Hibbert> <playsFor> "2010-##-##" <George Eastham, Sr.> <isAffiliatedTo> <York City F.C.> <Marcus Gayle> <playsFor> <Rangers F.C.> <occursSince> "2001-##-##" <Iván Campo> <plavsFor> <AEK Larnaca FC>

Multiple extremely sparse tensors

Not too much work...

- Temporal logic [van Benthem, 1995]
- Latent models [Jiang et al., 2016; Trivedi et al., 2017; Leblay et al., 2018]

Challenges:

- Time information is very sparse
- Heterogeneity of time information
- Point-in-Time / Intervals of time

(Not really) Off-topic: Language Modeling

RNN Architecture One representation per word Limited vocabulary Char - RNN Architecture One representation per character Unlimited vocabulary

[Garcia-Duran et al.,2018] Incorporate time information into standard embedding approaches for link prediction like

TRANSE: $f(s, p, o) = ||\mathbf{e}_s + \mathbf{e}_p - \mathbf{e}_o||_2$ DISTMULT: $f(s, p, o) = (\mathbf{e}_s \circ \mathbf{e}_o)\mathbf{e}_p^T$.

Trick:

Fact	Predicate Sequence
(BO, country, US)	[country]
(BO, bornIn, US, 1961)	[born, 1y, 9y, 6y, 1y]
(BO, president, US, since, 2009-01)	[president, since, 2y, 0y, 0y, 9y, 01m]

Architecture:

TA-TRANSE:
$$f(s, p_{seq}, o) = ||\mathbf{e}_s + \mathbf{e}_{p_{seq}} - \mathbf{e}_o||_2$$

TA-DISTMULT: $f(s, p_{seq}, o) = (\mathbf{e}_s \circ \mathbf{e}_o)\mathbf{e}_{p_{seq}}^T$.

Temporal KGs

Data set	YAGO15ĸ	ICEWS '14	ICEWS 05-15	WIKIDATA
Entities	15,403	6,869	10,094	11,134
Relationships	34	230	251	95
#Facts	138,056	96,730	461,329	150,079
#Distinct TS	198	365	4,017	328
Time Span	1513-2017	2014	2005-2015	25-2020
Training	110,441	78,826	368,962	121,422
framing	[29,381]	[78,826]	[368,962]	[121,422]
Validation	13,815	8,941	46,275	14,374
validation	[3,635]	[8,941]	[46,275]	[14,374]
Test	13,800	8,963	46,092	14,283
1050	[3,685]	[8,963]	[46,092]	[14,283]

Queries

- (s, p, ?) / (s, p, ?, date) / (s, p, ?, temporal_modifier, date)
- (?, p, o) / (?, p, o, date) / (?, p, o, temporal_modifier, date)

Standard Evaluation Metrics

• MRR, MR, Hits@1, Hits@10

	YAGO15K			WIKIDATA				
	MRR	MR	Hits@10	Hits@1	MRR	MR	Hits@10	Hits@1
TTRANSE	32.1	578	51.0	23.0	48.8	80	80.6	33.9
TRANSE	29.6	614	46.8	22.8	31.6	50	65.9	18.1
DISTMULT	27.5	578	43.8	21.5	31.6	77	66.1	18.1
TA-TRANSE	32.1	564	51.2	23.1	48.4	79	80.7	32.9
TA-DISTMULT	29.1	551	47.6	21.6	70.0	198	78.5	65.2
	ICEWS 2014			ICEWS 2005-15				
	MRR	MR	Hits@10	Hits@1	MRR	MR	Hits@10	Hits@1
TTRANSE								
TIMMOL	25.5	148	60.1	7.4	27.1	181	61.6	8.4
TRANSE	25.5 28.0	148 122	60.1 63.7	7.4 9.4	27.1 29.4	181 84	61.6 66.3	8.4 9.0
TRANSE DISTMULT	25.5 28.0 43.9	148 122 189	60.1 63.7 67.2	7.4 9.4 32.3	27.1 29.4 45.6	181 84 90	61.6 66.3 69.1	8.4 9.0 33.7
TRANSE DISTMULT TA-TRANSE	25.5 28.0 43.9 27.5	148 122 189 128	60.1 63.7 67.2 62.5	7.4 9.4 32.3 9.5	27.1 29.4 45.6 29.9	181 84 90 79	61.6 66.3 69.1 66.8	8.4 9.0 33.7 9.6

NEC

Neural Link Prediction for Multi-Modal Knowledge Graphs

All data sets are available at:

https://github.com/nle-ml/mmkb

Neural Link Prediction for Multi-Modal Knowledge Graphs

Failing with Latent and Relational Models

Simple Link Prediction in KGs:

- Graph Structure and Numerical Information
- Visual Information

Simple Link Prediction in Temporal KGs

Remarks

Remarks Simple Link Prediction

A very important evaluation problem

- Remember KGs are far from complete...
- ... but they are used as ground truth for completeness evaluation
- FB15k: (US, contains, ?)
 - Around 1600 entities answer that query
 - Less than 1000 of these correct completions are in the ground truth

Advice: Run exps. in many data sets

Importance of the loss & hyperparameter choices [Kadlec et al.,2017]

DistMult (orig) (Yang et al., 2015)	-	94.2	0.83	-	57.7	0.35
DistMult (Toutanova and Chen, 2015)	-	-	-	-	79.7	0.555
DistMult (Trouillon et al., 2017)	-	93.6	0.822	-	82.4	0.654
Single DistMult (this work)	655	94.6	0.797	42.2	89.3	0.798

Remarks Simple Link Prediction

You can learn a lot!

- Experiments are relatively fast
- Implementation of these methods is easy

```
# distMult model
e1 = Input(shape=(num negative + 1,), name="e1")
e2 = Input(shape=(1,), name="e2")
rel = Input(shape=(1,), name="rel")
# Embeddings
ent embedding = Embedding(numEnt, embedding dim, name='ent embeddings')
rel_embedding = Embedding(numRel, embedding_dim, name='rel_embeddings')
e1 emb = Dropout(drop)(ent embedding(e1))
e2 emb = Dropout(drop)(ent embedding(e2))
rel emb = Dropout(drop)(rel embedding(rel))
mult elmWise = Multiply(name='joint emb')([rel emb, e2 emb])
score = Dot(2, name='score')([mult elmWise, e1 emb])
score = Activation('softmax')(Reshape((num_negative + 1,), name='soft_out')(score))
adam = Adam()
model = Model(input=[e1, e2, rel], output=[score])
model.compile(loss='categorical crossentropy', optimizer=adam)
```

Simple Link Prediction

- Don't do it
- There are many other interesting related-problems!

Link Prediction in Attributed KGs [Zitnik et al.,2018]

Complex Queries [Hamilton et al.,2018]

Remarks Interesting Problems

Non-Binary Predicates

- ((Alberto, Mathias), met_at, Heidelberg)
- Reification: turn n-ary predicates to binary ones

Entity Linking

• Specific type of query (h, sameAs, ?) / (?, sameAs, t)

Hierarchical Embeddings in KGs?

• [Nickel et al., 2017] learn hierarchical embeddings for taxonomies

Get inspiration for other problems!

Remarks Related Problems

Recommender Systems

• Sequential Recommendation [He et al.,2017]

Recommender Systems

• Reviews available [Garcia-Duran et al.,2017b]

Recommender System

Neural Link Prediction for Multi-Modal Knowledge Graphs

Recommender Systems

Language Modeling [Ahn et al., 2016]

Example. Given a topic on Fred Rogers with topic description

W= "Rogers was born in Latrobe, Pennsylvania in 1928"

and topic knowledge $\mathcal{F} = \{a^{42}, a^{83}, a^0\}$ where

 $a^{42} = (Fred_Rogers, Place_of_Birth, Latrobe_Pennsylvania)$ $a^{83} = (Fred_Rogers, Year_of_Birth, 1928)$ $a^0 = (Fred_Rogers, Topic_Itself, Fred_Rogers),$

Remarks Related Problems

Text Generation [Serban et al., 2016]

?

 w_N

 w_{N-1}

Fact	Human	Baseline	MP Triples TransE++
bayuvi dupki	where is bayuvi dupki?	what state is the city	what continent is bayuvi
- contained by -		of bayuvi dupki located	dupki in?
europe		in?	
illinois	what is in illinois?	what is a tributary	what is the name of a place
– contains –		found in illinois?	within illinois?
ludlow township			
neo contra	who published	which company pub-	who is the publisher for the
 publisher – 	neo contra?	lished the game neo	computer videogame neo
konami		contra?	contra?
pop music	what artist is known for	An example of pop music is	who's an american
– artists –	pop music?	what artist?	singer that plays pop
nikki flores			music?

Learned the basic concepts of:

- Relational Models
- Latent Models
- Strengths & Weaknesses

How to learn from modalities other than the graph structure

How to learn with temporal information

Many interesting problems to address

• Simple Link Prediction is not one of them

People are using KGs in many other problems

[Ahn et al., 2017] A Neural Knowledge Language Model [An et al., 2018] Accurate Text-Enhanced Knowledge Graph Representation Learning [van Benthem et al., 1995] Temporal Logic [Garcia-Duran et al., 2017a] KBlrn: End-to-End Learning of Knowledge Base Representations with Latent, Relational and Numerical Features [Garcia-Duran et al., 2017b] TransRev: Modeling Reviews as Translations from Users to Items [Garcia-Duran et al., 2018] Learning Sequence Encoders for Temporal Knowledge Graph Completion [Gardner et al., 2015] Efficient and Expressive Knowledge Base Completion Using Subgraph Feature Extraction [Guo et al., 2016] Jointly Embedding Knowledge Graphs and Logical Rules [Guu et al., 2016] Traversing the Knowledge Graph in Vector Space. [Hamilton et al., 2018] Querying Complex Networks in Vector Space [He et al., 2017] Translation-Based Recommendation [Hinton, 2000] Training Product of Experts by Minimizing Contrastive Divergence [Jiang et al., 2016] Encoding Temporal Information for Time-Aware Link Prediction [Kadlec et al., 2017] Knowledge Base Completion: Baselines Strikes Back

[Krishna et al., 2015] Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations [Leblay et al., 2018] Deriving Time Validity in Knowledge Graph [Onoro-Rubio et al., 2017] Representation Learning for Visual-Relational Knowledge Graphs [Lonij et al., 2017] Open-World Visual Recognition Using Knowledge Graphs [Minervini et al., 2017] Adversarial Sets for Regularized Neural Link Predictors [Neelankatan et al., 2015] Compositional Vector Space Models for Knowledge Base Completion [Nickel et al., 2017] Poincare Embeddings for Learning Hierarchical Representations [Rocktaschel et al., 2015] Injecting Logical Background Knowledge into Embeddings for Relation Extraction [Serban et al., 2016] Generating Factoid Questions with RNN [Trivedi et al., 2017] Know-Evolve: Deep Temporal Reasoning for Dynamic Knowledge Graphs [Wang et al., 2016] Text-Enhanced Representation Learning for Knowledge Graph [Zitnik et al., 2018] Modeling Polypharmacy Side Effects with Graph Convolutional Networks

