

Learning from Multi-Modal and Graph-Structured Data

Alberto Garcia-Duran and Mathias Niepert

NEC Labs Europe Heidelberg

NEC Global R&D Activities

- (1) Create new technologies and business directions through collaboration between labs and academia
- (2) Reinforce global open innovation, corporate with academia and industry partners

NEC Labs Europe: What do we do?

- \sim 80 researchers, \sim 80% PhDs, 20 nationalities
- Pure research lab, no product development
- Main objectives:
 - 1. Research output for top tier conferences
 - 2. Stable prototypes for technology transfer
 - 3. Patent applications
 - Product prototypes based on lab's research

Research Collaborations

NEC Japan (business units and central labs)

NEC

- Digital Health
- Retail
- Finance
- Networked Systems
- EU Projects
 - Exploration of applications not coming from NEC
 - Opportunity to stay in touch with research community
 - Understand trends and problems in the SME market
- Third party Collaborations
 - DKFZ
 - University of Heidelberg medical school

Systems and ML Research Group

14 ML Researchers

12 Systems Researchers

Main Research Themes

- Multi-Modal Learning and Reasoning
 - Combining different attribute types and modalities
 - Knowledge graphs for multi-modal learning (combining deep learning and logical reasoning)

- Graph-based Machine Learning
 - Learning graph representations
 - Unsupervised and semi-supervised learning

Gotoh Museum

Murasaki Shikibu

hasArtAbout

Japan

Latitude: 35.65

Area: 2,2

Avg. salary: 520,060

Sensō-ji

- Systems and ML
 - ML for Systems and Systems for ML
 - CPU/GPU/network optimizations etc.
 - Deep learning for data networks

Technological Challenges

ML that works without much labelled data (unsupervised and semi-supervised learning) Data
Data

Tokyo

Interpretable and Explainable AI

Ability to combine different data modalities (data integration, multi-modal learning)

Latitude: 35.65

(Japanese: [to:kjo:] (listen), English: /'toʊki.oʊ/), officially Tokyo Metropolis, [6] is the capital of Japan and one of its 47 prefectures, [7]

Efficiency and support of real time predictions (network speed if required)

Applicable to several business use cases (horizontal technology)

Graph-Based Machine Learning

Example Applications – Drug Discovery

Learn representations for entire graphs Graph classification/ regression problems

Example Applications – Patient Outcome Prediction

Example Applications – Recommender Systems

Example Applications – Polypharmacy Prediction

Example Applications – Knowledge Base Completion

Outline of the First Part of our Lecture

- 1. Basic Concepts
- 2. Two Perspectives on Learning from Graphs
 - Knowledge Graph = Tensor (KB completion, evaluation, etc.)
 - Learning from Local Structure (learning from paths and neighborhoods)
- 3. Some Practical Observations

- 1. Properties of nodes
- 2. Properties of links
- 3. Properties of graphs
- 4. Prediction of missing links
- 5. More complex queries

Answering queries

What is the diagnosis and outlook of beardy patient?

- 1. Properties of nodes
- 2. Properties of links
- Properties of graphs
- 4. Prediction of missing links
- More complex queries

What's the rating user A would give to product 3?

- Properties of nodes
- 2. Properties of links
- 3. Properties of graphs
- Prediction of missing links
- 5. More complex queries

Answering queries

Is this new molecule toxic to humans?

- ${f 1.}$ Properties of nodes
- Properties of links
- 3. Properties of graphs
- Prediction of missing links
- 5. More complex queries

♣

- 2. Properties of links
- 2. Properties of links
- 3. Properties of graphs
- 4. Prediction of missing links
- 5. More complex queries

- Properties of nodes
- 2. Properties of links
- Properties of graphs
- 4. Prediction of missing links
- 5. More complex queries

A Quick Word Before We Start

- SRL (ProbLog, Markov Logic, PSL, etc.) has been **successfully** used to learn from graph structured data
- **Assumption:** other lectures have covered these topics
- **Hope:** Combine concepts from SRL and representation learning to have advantages of both

Basic Graph Terminology

Node identifier

Multi-relational graphs without additional node features can be represented as a list of triples (h, r, t)

Head entity Tail entity

Relation type

Vectors and Tensors

© Berton Earnshaw

Vector Operations

Summation

Elementwise multiplication

а		1		a1
b		2		b2
С	*	3	=	c3
d		4		d4
е		5		e5

Vector dot product

$$= a1 + b2 + c3 + d4 + e5$$

Matrix Operations

Elementwise multiplication (Hadamard product)

Matrix multiplication

Matrix Factorization

5 x 6 matrix X_{13} X₁₅ X_{11} X_{12} X_{14} X_{16} X_{25} X_{22} X_{24} X_{12} X_{33} X_{34} X_{35} X_{42} X_{44} X_{43} X_{46} X_{45} X_{53} X_{52} X_{54} X_{55} X_{56}

The Differential Programming Approach

 Step 1: Assume users and movies are represented with one-hot encoding and define encoding function f for users and movies

One-hot encoding

 $[0\ 0\ 1\ 0\ 0\ 0\ 0\ 0]$

Embedding (dimension size=3)

Score =
$$\begin{vmatrix} 0.2 \\ 0.9 \\ -1.6 \end{vmatrix} = \begin{bmatrix} 0.8 \\ -1.2 \\ 0.5 \end{vmatrix} = \begin{bmatrix} -1.72 \end{bmatrix}$$

Loss =
$$(-1.72 - 3)^2$$
 Observ

Observed rating

Two Perspectives on Learning from Graph Data

1. The multi-relational graph as a **3D tensor**

Two Perspectives on Learning from Graph Data

1. The multi-relational graph as a **3D tensor**

1. The multi-relational graph as a **3D tensor**

Nickel et al, A Three-Way Model for Collective Learning on Multi-Relational Data, 2011

© Maximilian Nickel

• **Step 1:** Choose the representation (encoding) for entities and relations

Entities:
$$e_i =$$
 Relation types: $W_r =$

$$W_r =$$

■ **Step 2:** Choose scoring function for triples (h, r, t) = coordinates in the 3D tensor

$$s(h,r,t) = \boldsymbol{e}_h^T \cdot \boldsymbol{W}_r \cdot \boldsymbol{e}_t$$

Step 3: Choose loss function

$$\sum_{h,r,t} (T_{\{h,r,t\}-s(h,r,t)})^2$$

- **DistMult:** top performing KB embedding method
- Simplifies RESCAL; relation matrix only non-zero in diagonal

$$s([,,],]) = ([*])$$

Geometric interpretation: Absolute value is the volume of the 3D parallelogram spanned by the three vectors

TransE learns embeddings of entities and relations

TransE learns embeddings of entities and relations

Geometric interpretation: Relation vector translates (moves) head entity embedding to tail entity embedding

Knowledge Graph Representations

Many alternative scoring functions have been proposed

Model	Scoring Function	Relation parameters
RESCAL (Nickel et al., 2011)	$e_s^T W_r e_o$	$W_r \in \mathbb{R}^{K^2}$
TransE (Bordes et al., 2013b)	$ (e_s+w_r)-e_o _p$	$w_r \in \mathbb{R}^K$
NTN (Socher et al., 2013)	$ u_r^T f(e_s W_r^{[1D]} e_o + V_r \begin{bmatrix} e_s \\ e_o \end{bmatrix} + b_r) $	$W_r \in \mathbb{R}^{K^2D}, b_r \in \mathbb{R}^K$ $V_r \in \mathbb{R}^{2KD}, \mathbf{u}_r \in \mathbb{R}^K$
DistMult (Yang et al., 2015)	$\langle w_r, e_s, e_o \rangle$	$w_r \in \mathbb{R}^K$
HolE (Nickel et al., 2016b)	$w_r^T(\mathcal{F}^{-1}[\overline{\mathcal{F}[e_s]}\odot\mathcal{F}[e_o]]))$	$w_r \in \mathbb{R}^K$
ComplEx	$\operatorname{Re}(\langle w_r, e_s, \bar{e}_o \rangle)$	$w_r \in \mathbb{C}^K$

Trouillon et al. 2016

Loss Functions

- Combines list of true triples with scoring function into a differentiable loss function
- **Challenge:** open-world assumption \rightarrow only positive examples
- Several losses have been proposed

Softmax-based loss

$$-\log\left(\frac{\exp(s(h,r,t))}{\sum_{triple \in C} \exp(s(triple))}\right)$$

$$c = N \text{ corrupted triples}$$

Randomly corrupted tail

Evaluating KB Completion Methods

There are several benchmark data sets

compact

- FB15k
- FB15k-237

hatch-back

- FB122
- WN18

•

gas guzzler

Data set	FB15k	FB15k-num	FB15k-237	FB15k-237-num	WN18	FB122
Entities	14,951	14,951	14,541	14,541	40,943	9,738
Relation types	1,345	1,345	237	237	18	122
Training triples	483,142	483,142	272,115	272,115	141,442	91,638
Validation triples	50,000	5,156	17,535	1,058	5,000	9,595
Test triples	59,071	6,012	20, 466	1,215	5,000	11,243
Relational features	90,318	90,318	7,834	7,834	14	47

Evaluation Procedure

- Most knowledge graph benchmarks come with a predefined
 80/10/10 split of the triples
- Train the model on the training triples, tune hyperparameters on the validation triples, report metrics on the test triples

Test triple

(h, r, t)

Substitute tail

(h, r, t₁) (h, r, t₂) (h, r, t₃) (h, r, t₄) (h, r, t₅) Compute scores and rank

Apply quality measures for rankings

Evaluation Metrics – Hits@X

Usually, other correct completions are removed

Test triple
$$(h, r, t_2)$$
 (h, r, t_2) (h, r, t_2) $(h, r, t_5=t)$ (h, r, t_1) (h, r, t_1) (h, r, t_3) ...

Hits@X: "Is the correct entity among the top X ranked entities?"

(h, r,
$$t_2$$
)
(h, r, $t_5=t$)
(h, r, t_1)
(h, r, t_1)
(h, r, t_3)

Rank = 2 \longrightarrow 1 if 2 \le X
0 else

Evaluation Metrics - Mean Rank (MR)

Mean rank (MR): "The mean of the ranks of correct entity."

Test triple

(h, r,
$$t_2$$
)
(h, r, $t_5=t$)
(h, r, t_1)

(h, r, t_3)

Rank = 2

Compute **average** of all ranks for all test triples

Evaluation Metrics - Mean reciprocal rank

Mean reciprocal rank (MRR): "The mean of the ranks of correct entity."

Test triple: (h, r, t)

(h, r,
$$t_2$$
)
(h, r, $t_5=t$)
(h, r, t_1)

(h, r, t_3)

Rank = 2

Compute average of the **reciprocal** of the rank of correct entity

$$MRR = \sum_{t \in Test} \frac{1}{rank(t)}$$

Some Recent Results

Method		Filtered				Se .	
		WN18		FB15k		Extra	
		H10	MRR	MR	H10	MRR	Es Ex
SE (Bordes et al., 2011)	985	80.5	-	162	39.8	-	
Unstructured (Bordes et al., 2014)	304	38.2	-	979	6.3	-	
TransE (Bordes et al., 2013)	251	89.2	-	125	47.1	-	
TransH (Wang et al., 2014)	303	86.7	-	87	64.4	-	
TransR (Lin et al., 2015b)	225	92.0	-	77	68.7	-	
CTransR (Lin et al., 2015b)	218	92.3	-	75	70.2	-	
KG2E (He et al., 2015)	331	92.8	-	59	74.0	-	
TransD (Ji et al., 2015)	212	92.2	-	91	77.3	-	
lppTransD (Yoon et al., 2016)	270	94.3	-	78	78.7	-	None
TranSparse (Ji et al., 2016)	211	93.2	-	82	79.5	-	Z
TATEC (Garcia-Duran et al., 2016)	-	-	-	58	76.7	-	
NTN (Socher et al., 2013)	-	66.1	0.53	-	41.4	0.25	
HolE (Nickel et al., 2016)	-	94.9	0.938	-	73.9	0.524	
STransE (Nguyen et al., 2016)	206	93.4	0.657	69	79.7	0.543	
ComplEx (Trouillon et al., 2017)	-	94.7	<u>0.941</u>	-	84.0	0.692	
ProjE wlistwise (Shi and Weniger, 2017)	-	-	-	<u>34</u>	88.4	-	
IRN (Shen et al., 2016)	249	95.3	-	38	<u>92.7</u>	-	
RTransE (García-Durán et al., 2015)	-	-	-	50	76.2	-	
PTransE (Lin et al., 2015a)	-	-	-	58	84.6	-	Path
GAKE (Feng et al., 2015)	-	-	-	119	64.8	-	
Gaifman (Niepert, 2016)	352	93.9	-	75	84.2	-	
Hiri (Liu et al., 2016)	-	90.8	0.691	-	70.3	0.603	
R-GCN+ (Schlichtkrull et al., 2017)	-	<u>96.4</u>	0.819	-	84.2	0.696	
NLFeat (Toutanova and Chen, 2015)	-	94.3	0.940	-	87.0	0.822	
TEKE_H (Wang and Li, 2016)		92.9	-	108	73.0	-	Text
SSP (Xiao et al., 2017)		93.2	-	82	79.0	-	
DistMult (orig) (Yang et al., 2015)	-	94.2	0.83	-	57.7	0.35	
DistMult (Toutanova and Chen, 2015)	-	-	-	-	79.7	0.555	.
DistMult (Trouillon et al., 2017)		93.6	0.822	-	82.4	0.654	None
Single DistMult (this work)		94.6	0.797	42.2	89.3	0.798	12
Ensemble DistMult (this work)	457	95.0	0.790	35.9	90.4	<u>0.837</u>	

Methods generally **sensitive to hyperparameters** such as loss, number of negative examples, embedding dim, etc.

Well-tuned simple methods outperform more complex models

Kadlec et al., Knowledge Base Completion: Baselines Strike Back, 2017

Survey Paper for Learning with KGs

Nickel et al., A Review of Relational Machine Learning for Knowledge Graphs. Proc. IEEE, 2015.

Recent Developments

- Hyperbolic embeddings (Nickel et al. 2017)
- Useful for hierarchical knowledge graphs

https://hazyresearch.github.io/hyperE/

Knowledge Graph Embeddings

What do they actually learn?

- Fine grained **latent types** of entities
- Latent representation of relation types

What do they not learn?

- Relational model with constants
- E.g., relation true if married to PersonX

Majority of KB embedding approaches are outperformed by simple relational baselines

- First observed by Toutanova et al, 2015
- Holds true for dense KBs (e.g. FB15k) but not for sparser ones (e.g., FB15k-237)
- Embedding methods outperform purely relational models on sparse KBs

© Corby Rosset

Alternative Matrix Representations

Universal Schema (Riedel et al., 2013)

Relation types Text documents: relations from dependency parses Pairs of entities President Chancellor Chief Header of Prime of Leader of HeadOf TopMember of Executive state Obama. U.S. Merkel. Y Υ Germany S Harper, Y Y Cananda V Putin. Y Υ Russia Larry Page. Y Google V. Rometty, Y Y **IBM** Tim Cook. Y Apple E Grimson. © Riedel et al. MIT

- Also used in conjunction with rule mining approaches (Voelker and Niepert, 2011)
- More later ...

Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

NB: Learning from local structures can capture global properties through a recursive propagation process between nodes

Sensō-ji

Learning From Random Walks and Paths

Basic idea: **Mine frequent paths** in the graph and use these paths as features for some learning method

Methods for Path Extraction

Perform a large number of Random Walks

Keep the paths most frequently encountered

Methods for Learning from Single-Relational Paths

- Interpret every walk as a sentence (sequence of nodes visited)
- Train word embedding method such as Word2vec

Continuous bag of words

DeepWalk

(a) Random walk generation.

(b) Representation mapping.

(c) Hierarchical Softmax.

Skip-gram model

Results in node embeddings to be used for other tasks

Methods for Learning from Multi-Relational Paths

- Interpret every walk as a logical rule: "If path is present, then set feature to 1"
- Combine these features with simple classifier such as logistic regression

Good feature to predict "locatedIn"

Lao and Cohen, Path Ranking Algorithm, 2010

Other Methods for Mining Path-Like Features (I)

- Create table with one row per entity pair and one column per relational type (coined "universal schema" in IE context)
- Perform association rule mining (Voelker and Niepert, 2011)

- PresidentOf(A, B) \rightarrow HeadOf(A, B) etc.
- Only Horn clauses with same two variables per relation

Other Methods for Mining Path-Like Features (II)

- AMIE (Galárraga et al. 2013) generalizes prior work by mining closed horn rules such as R(A, B) ^ R(B, C) → R(A, C)
- Closed rule: all variables appear at least in two relations
- Highly optimized for large knowledge graphs
- KBLRN (more later) uses this as the core rule miner

Dataset	# of facts	Settings	Latest runtime
YAGO2	948048	Default	28.19s
YAGO2	948048	Support 2 facts	3.76 min
YAGO2 sample	46654	Support 2 facts	2.90s
YAGO2	948048	Default + constants	9.93 min
YAGO2s	4122426	Default	59.38 min
DBpedia 2.0	6704524	Default	46.88 min
DBpedia 3.8	11024066	Default	7h 6 min
Wikidata (Dec 2014)	11296834	Default	25.50 min

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie/

Other Methods to Learn from Known Rules (I)

Extend existing KG embedding methods to learn from longer paths (Guu et al. 2015)

Other Methods to Learn from Known Rules (II)

- Use known rules to generate adversarial examples (Minervini et al. 2017)
- If existing KB completion model maintain fact representations that contradict a known rule, backpropagate to make contradiction less likely

Example

- Rule: (A, locatedIn B) and (B, capitalOf, C) → (A, locatedIn, C)
- Adversarial example:

Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

NB: Learning from local structures can capture global properties through a recursive propagation process between nodes

Representation Learning for Knowledge Graphs

- **Observation:** Effective representations are often composed bottom-up from **local** representations
 - Weight sharing
 - Hierarchical features
 - Model tractability
- **Example:** Convolutional neural networks

© Yann LeCun

Question: What is a suitable notion of **locality** in knowledge graphs?

Gaifman Locality

Knowledge graph

Gotoh Museum Murasaki Shikibu hasArtAbout Japan Latitude: 35.65 Area: 2,2 Avg. salary: 520,060 Sensō-ji

Gaifman graph

- **Local sentences** are sentences whose quantifiers range over *r*-neighborhoods of the Gaifman graph
- Gaifman's Locality Theorem:

"Every first-order sentence can be written as a Boolean combination of **local sentences."**

Discriminative Gaifman Models

- The goal is to learn representations of r-neighborhoods for which the query evaluates to **true** and **false**
- **Query:** (H?, capitalOf, T?)
- Basic idea: Sample local neighborhoods where query is
 - true and where query is false and use as training data

Relational Features Sampled local neighborhood Feature vector Ф Murasaki Shikibu Gotoh Museum capitalOf(H, T) capitalOf(T, H) hasArtAbout locatedIn(H, x) locatedIn(x, H) bornIn(T, x)Japan bornIn(x, T)Tokyo $\exists x,y : locatedIn(x, H) \land$ $hasArtAbout(x, y) \land bornIn(y, T)$ Sensō-ji

Training Gaifman Models

- 1. Given a target query (Tokyo, capitalOf, y?)
- 2. Sample a number of bounded-size neighborhoods of pairs (A, B) for which (A, capitalOf, B) holds
- 3. Sample a number of bounded-size neighborhoods of corrupted pairs (A', B')
- 4. Evaluate **relational features** to generate vector representation
- 5. Train a (deep) neural network model

Inference in Gaifman Models

Inference is performed by generating one (or more) neighborhoods and querying the trained Gaifman model

(Tokyo, capitalOf, x?)

Discriminative Gaifman Models

Possible training objective

Vector representation of neighborhood resulting from relational features

Sampled positive and negative Gaifman neighborhoods

Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

NB: Learning from local structures can capture global properties through a recursive propagation process between nodes

Strengths of CNNs

- Implicit feature hierarchy based on **local features**
- Parameter sharing across data points

Straightforward for regular graphs

Challenging for irregular graphs

The Big Question of Graph CNNs

How do we aggregate neighborhood information into fixedsize representations? → requirement for weight sharing

Aggregation direction

- Feature transformations are applied **locally** for each node on its neighborhood
- Requires ability to work with **highly heterogeneous** neighborhood structures

A Spectrum Of Methods

Patchy [ICML 2016] Neighborhood Normalization

High variance Low bias

Learning CNNs for Graphs

Image CNN

- Grid graph required (spatial order)
- Works <u>only</u> for images

Standard CNN moves over image

Graph CNN

- Arbitrary input graph
- Node attributes
- Edge attributes

Neighborhood Normalization

Feature Visualization

small instances of input graphs

A Spectrum Of Methods

Patchy [ICML 2016] Neighborhood Normalization

GCN [ICLR 2017] Average Pooling

High variance Low bias

Low variance High bias

Graph Convolutional Networks

- Compute a **weighted sum** of the node features where weights are determined by **global node adjacency** information
- Essentially average pooling of the (latent) node features

Graph Convolutional Networks

A Spectrum Of Methods

Generalization: MoNet (fixed number of weighted sums) ~ Gaussian mixture model but with fixed number of Gaussian kernels

Recent Methods for Learning from Neighborhoods

Embedding Propagation (unsupervised, multi-modal, missing data)

Recent Methods for Learning from Neighborhoods (II)

- Graph Attention Networks (extend idea of attention to graphs)
- Special case of MoNet

Petar Veličković, 2018 α_{ij} concat/avg $\vec{\mathbf{W}}\vec{h}_i$ $\mathbf{W}\vec{h}_i$

Some Practical Observations

- 1. Embedding methods learn latent type representations
- Dichotomy of relational features: either work perfectly or fail completely (random) → known to be brittle
- 3. Relational features outperform embedding methods on KBs with dense relational structure
- Embedding methods outperform relational methods in more sparsely connected KGs; don't depend on quality of rules
- 5. Combinations of the two are more robust and perform better (Motivation for second part of the lecture)

		Rank	
Query	Correct entity	TE	GM
nationality(?, US)	W. H. Macy	2	233
born_here(HK, ?)	W. Chau-sang	5	135
contains(?, Curtis-Inst)	USA	32	1
children(?, H. Roshan)	R. Roshan	26	1

Some Practical Observations

- KG embedding methods are very versatile
- We have successfully used it for
 - Product Recommendation
 - Polypharmacy Predictions
 - Patient Outcome Prediction
 - Drug Discovery Problems

Some Practical Observations

- **Simple** methods tend to be more robust, that is, generalize better in several application domains
- Including more modalities (text, images, numerical features) improves results (motivation for second part of lecture)
- However, improvement over **simple** methods is modest for the typical knowledge base completion benchmarks
- Important in industrial applications to be able to incorporate "relational features", that is, known domain-specific rules
- In industrial applications, there is inherent value in methods that allow one to **understand the rules used for**prediction → advantage of methods that do not learn a purely latent representation (motivation for KBLRN)
- Most industrial applications involve relational data and/or text data (images and other modalities are more rare)