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NEC Global R&D Activities

(1) Create new technologies and business directions through collaboration
between labs and academia

(2) Reinforce global open innovation, corporate with academia and industry
partners

NEC Labs Europe S NEC Labs China

Central Research Laboratories
— T :EEE (1 " 1 (Japan)
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NEC Labs Singapore
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NEC Labs Europe: What do we do?

| ~ 80 researchers, ~80% PhDs, 20 nationalities
| Pure research lab, no product development

| Main objectives:
1. Research output for top tier conferences
2. Stable prototypes for technology transfer
3. Patent applications

| Product prototypes based on lab’s research

Summer School on Statistical Relational Artificial Intelligence



Research Collaborations

| NEC Japan (business units and central labs) NEC
e Digital Health
e Retail
e Finance
e Networked Systems

| EU Projects

e Exploration of applications not coming from NEC
e Opportunity to stay in touch with research community
e Understand trends and problems in the SME market

| Third party Collaborations Uell

e DKFZ
e University of Heidelberg medical school

2B UNIVERSITY OF

&% CAMBRIDGE

& ® Universidad
Q. i 4 Carlos Il de Madrid
RS

HiGHmMed

Medical Informatics

dkfz.

GERMAN

CANCER RESEARCH CENTER
IN THE HELMHOLTZ ASSOCIATION

Medizinische Fakultdt Heidelberg
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Systems and ML Research Group

| 14 ML Researchers
| 12 Systems Researchers
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Main Research Themes

. . . Gotoh Museum Murasaki Shikibu
| Multi-Modal Learning and Reasoning Q
e Combining different attribute types and modalities ®
e Knowledge graphs for multi-modal learning o
Latitude: 35.65 Area: 378

(combining deep learning and logical reasoning) Area: 2.2

Avg. salary: 520,060

Avg. salary: 482,163

Senso-ji

| Graph-based Machine Learning x
e Learning graph representations LAy EE
e Unsupervised and semi-supervised learning x ‘4 E

] Systems and ML
e ML for Systems and Systems for ML

e CPU/GPU/network optimizations etc. /1&-: D\:\\m
e Deep learning for data networks T b RTREY ||

output [0] = (b) |8 58 \
5 2% Al
foreach x in imput[4:1: €3 g3 1)
alx] = batchNorm(x) |8 & I
b(x] = max(alx], 0) 4 / g
output (1] = max(b) \%
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Technological Challenges

| ML that works without much labelled data
(unsupervised and semi-supervised learning)

Blood
pressure g

| Interpretable and Explainable Al obeies | @[ o

Tokyo

(Japanese: [to:kjo:

( listen), English:
/towki.ow/), officially
Tokyo Metropolis, ¢!
is the capital of
Japan and one of its
47 prefectures.l7]

| Ability to combine different data modalities
(data integration, multi-modal learning)

Latitude: 35.65

| Efficiency and support of real time predictions ﬁ

(network speed if required)

| Applicable to several business use cases (horizontal technology)

@ @ || ||| @ || e
O || = e-ojgé 15" BB =
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https://en.wikipedia.org/wiki/Help:IPA_for_Japanese
https://upload.wikimedia.org/wikipedia/commons/c/cf/Ja-Tokyo.ogg
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Tokyo
https://en.wikipedia.org/wiki/Japan
https://en.wikipedia.org/wiki/Prefectures_of_Japan
https://en.wikipedia.org/wiki/Tokyo

Graph-Based Machine Learning

Learn representations for entire graphs

“
L -:; 2l Graph classification/
i .q *5‘" » regression problems
Rk Tt 3 ?
Learn representations for nodes
Node classification/
§ 3o - regression problems
» SR "-:"*:a _ .
’.',,...'\.‘ Link prediction
Induce Ry problems
graph

Latitude: 35.65
Area: 2,2
Avg. salary: 520,060

Japan

Latitude: 36.21
Area: 378

Avg. salary: 482,163

Senso-ji
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Example Applications — Drug Discovery

Learn representations for entire graphs

(2 ]
IREG 7 . Graph classification/
:Q..?. ‘-.' u.p;'g"c*? -
7 77 il regression problems

£) W

ot 3 .,1'?@*.
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Example Applications — Patient Outcome Prediction

Learn representations for nodes

R vt .':5:.',‘ Node classification/
"o .“""','""’:'"73' regression problems
Induce QS .,g:-f@,".
graph

PR *°

@ [Ox@ex00] [000]| [0OX]
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u cep +
(3) @oecce Kxx @xe] \
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a [x@eooox] [000| [Coe] a’w”
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Example Applications — Recommender Systems

Learn representations for nodes

Gotoh Museum Murasaki Shikibu “
O . . .
. “,v.z..» _":. * Link prediction
o e > problem
l‘..o' Qe oy

Japan o ke -"!@3'

Latitude: 36.21
Latitude: 35.65 Area: 378

Area: 2,2
Avg. salary: 520,060

Avg. salary: 482,163

Senso-ji
aa) Review
Review —
ReV|ew ,
ﬂ— Review Eﬁ
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Example Applications — Polypharmacy Prediction

Learn representations for nodes

‘ E Eolypharmacyg N . Lo
DoxycycllneA side effectrs/A imvastatin . .l:.:.‘:;:. .-};‘ .. L| n k p red |Ct|0n
8 7 B RS O 1 bl
i i r—A\ Mupirocin 345,:.5"\} . e p roblem
% b e ,.d:'}@?,

12

E Polypharmacy E
Doxycycline A side effects Simvastatin
r E ry g
Ciprofioxacin r1——ﬁ_\‘ Mupirocin

E © SNAP 2018

A Drug @ Protein ry Gastrointestinal bleed side effect A—@ Drug-protein interaction

E Node feature vector 2 Bradycardia side effect @—@ Protein-protein interaction
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Example Applications — Knowledge Base Completion

Learn representations for nodes

Gotoh Museum Murasaki Shikibu -
. .
§ s . -
PY Ry 28 -,g--g;, Link prediction
’-fff,éﬁ.‘\! o problem

Japan AR ~":@3-

Latitude: 36.21
Latitude: 35.65 Area: 378

Area: 2,2
Avg. salary: 520,060

Avg. salary: 482,163

Gotoh Museum Murasaki Shikibu (1)

?) f? locatedIn 9
LAy | e

LY

3) -_". &

Japan o
Latitude: 36.21 New entity
Latitude: 35.65 Area: 378 ﬁ
Area: 2,2 Avg. salary: 482,163 - ?
Avg. salary: 520,060 (4) O @)
- . N ; Japan
Senso-ji ew entity
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Outline of the First Part of our Lecture

1. Basic Concepts

2. Two Perspectives on Learning from Graphs
® Knowledge Graph = Tensor (KB completion, evaluation, etc.)
® |Learning from Local Structure (learning from paths and neighborhoods)

3. Some Practical Observations

14 Summer School on Statistical Relational Artificial Intelligence hZ | = @



What Problem Does the Lecture Address?

Gotoh Museum Murasaki Shikibu
. ’J"" )
.- ... ‘tﬁ
'.Q ".\‘
. » 22 ~°‘.’@t
Japan Representation
Latitude: 36.21 Learnin
Latitude: 35.65 Area: 378 9
Area: 2.2

Avg. salary: 482,163

Senso-ji ‘ Answering queries ‘

Properties of nodes
Properties of links
Properties of graphs
Prediction of missing links
More complex queries

Avg. salary: 520,060

i kb=
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What Problem Does the Lecture Address?

Murasaki Shikibu

Gotoh Museum

Japan

Latitude: 36.21
Area: 378

Avg. salary: 482,163

Latitude: 35.65
Area: 2,2
Avg. salary: 520,060

Senso-ji

I omn What is the diagnosis

g
o @\ @ w and outlook of beardy
\ patient?

"X

i e

s,: *9

1

Representation
Learning

‘ Answering queries ‘

Properties of nodes

$ ol

o..V' s.,

o. "2’ ‘
"-:" £
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What Problem Does the Lecture Address?

Gotoh Museum

Latitude: 35.65
Area: 2,2
Avg. salary: 520,060

Senso-ji

Murasaki Shikibu

"X

Japan

Latitude: 36.21
Area: 378

Avg. salary: 482,163

What’s the rating
user A would give
to product 37?

i e
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Representation
Learning

‘ Answering queries ‘

Properties of links
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What Problem Does the Lecture Address?

Gotoh Museum Murasaki Shikibu
“
$ toe, *
... st s.. ,’.: 9
Wy
. ° %o "*‘}@t
Japan ' Representation
Latitude: 36.21 Learnin
Latitude: 35.65 Area: 378 9
Area: 2.2

Avg. salary: 482,163

Senso-ji ‘ Answering queries ‘

Avg. salary: 520,060

&

A

{725
4 Is this new molecule
toxic to humans?

B&L P ti f h

roperties or grapns
L, Tl e P 9P
PO AR ey

>

O

i e
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What Problem

Does the Lecture Address?

Gotoh Museum

Murasaki Shikibu

“

Latitude: 35.65
Area: 2,2
Avg. salary: 520,060

Senso-ji

Gotoh Museum

Japan

Latitude: 36.21
Latitude: 35.65 Area: 378
Area: 2,2
Avg. salary: 520,060

Senso-ji

19

Murasaki Shikibu
O

Avg. salary: 482,163

$ ol

V' s.. 5 ,’.:_ .*
e
AL gy

Representation
Learning

Japan

Latitude: 36.21
Area: 378

Avg. salary: 482,163

"X

Where is Senso-ji located
(besides Tokyo) ?

i e
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Prediction of missing links
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What Problem Does the Lecture Address?

Gotoh Museum Murasaki Shikibu
“
Jass
Sl e *.:- -!3.
:l‘ r;‘-‘
. % %o "*‘}@1
Japan ' Representation
Latitude: 36.21 i
Latitude: 35.65 Area: 378 Learnlng
Area: 2,2

Avg. salary: 482,163

Senso-ji ‘ Answering queries ‘

Avg. salary: 520,060

(1) KS —? & 1
@) _locatedln [ .
3) - T 3.
Newentlty
. T @ 4 |
Y iy we | 5. More complex queries
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A Quick Word Before We Start

| SRL (ProbLog, Markov Logic, PSL, etc.) has been successfully
used to learn from graph structured data

| Assumption: other lectures have covered these topics

| Hope: Combine concepts from SRL and representation learning
to have advantages of both

Summer School on Statistical Relational Artificial Intelligence




Basic Graph Terminology

* Node identifier
*Node label

*Node

»Gotoh Museum Muras 2diiailaides * Entity
* Object

Japan

Latitude: 36.21
Area: 378

Avg. salary: 482,163

Latitude: 35.65
Area: 2.2
Avg. salary: 52§

Senso-ji

. Relatifm type «Node features
* (Relation) »Node attributes
* Predicate

| Multi-relational graphs without additional node features can be
represented as a list of triples_ (h, r, t

Head entity Tail entity

Relation type
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Vectors and Tensors

vector matrix tensor

© Berton Earnshaw
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Vector Operations

Summation Elementwise multiplication
a 1 a+1 da 1 al
b 2 b+2 b 2 b2
C|l+ |3 ]| =|ct+3 b c|* |3 |=| c3
d 4 d+4 b/ d 4 d4
e 5 e+5 e S e5

Vector dot product

al + b2 + c3 + d4 + e5 | O = arccos(z-y/11 1)

®® QO o T o
.

o »h W N =
|
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Q O Q

> (M O

N A=
o U1 N
O O W

Matrix multiplication

Elementwise multiplication (Hadamard product)

Matrix Operations

Qo O

>0 M O
N b
co U1 N
O O W

al c3

d4 fé

g’/ i9
al+b4+c7 a2+b5+c8 a3+b6+c9
dl+e4+g7 d2+e5+f8 d3+e6+f9
gl+h4+i7 g2+h5+i8 g3+h6+i9

1 12
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Matrix Factorization

s q P
5 x 6 matrix 5 x 3 matrix 3 x 6 matrix
Xu Xl: an X1-1 Xl:. Xm X
le Xzz Xlz X24 Xz.’» X‘.Zh‘ Y
X1 st Xz | Xaq | X5 | X6 ~ a b C z
X | Xep [ Xig | Xy | X5 | X
%1%l Nl a5 | X
: __
o Movies
5 o)
(2]
NETFLIX 9 ()
D) ~ D)
~
=

f(i)

amazon

Movies I]
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The Differential Programming Approach

y Moviesl]]

= Step 1: Assume users and movies are 0 | o :
represented with one-hot encoding and define g Q f0)
encoding function f for users and movies — ~ 2
f(i)
Parameters Movies I]
One-hot encoding Embedding (dimension size=3)
[00100000] X = [0.20.9-1.6]
0.2 0.8
= Step 2: Define scoring function between user- Score = 0.9 |ef -1.2 = [1.72]
movie pairs '
-1.6 0.5
» Step 3: Define a loss between scorings and
actual existing user ratings Loss = (-1.72 — 3)?
= Step 4: Apply gradient decent to train the Observed rating

model “end-to-end”
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Two Perspectives on Learning from Graph Data

1. The multi-relational graph as a 3D tensor

1961-08-04
Ws
/7850*/70
24,
male hasGenge,
Nam
nasFamiy asBo,,
e Nin
Obama e(\\\\a‘“ Barack = . .
W &
82| _ovama © i-th entity
¥ O =
- & °¢(.’ o\ Honolulu [ 8
Barack O

O .
k-th relation

Michelle
Obama

W Nickel
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Two Perspectives on Learning from Graph Data

1. The multi-relational graph as a 3D tensor

1961-08-04
Wa, 5

Q
e
0O,
Lat fa
has Gender

pasFamiyName

)
o5 [ Barack
W'
& o Obama

i-th entity
L 3

k-th relation

© Maximilian Nickel
Obama

y Movies ﬂ:l
()

|] Users
13
Users

fli)

Movies |]
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RESCAL

1. The multi-relational graph as a 3D tensor

: . i-th entit
i-th entity y.‘
-3

~

jth entity

k-th relation —

-
-
-
-
-
-
-
-
o
-

k-th relation

/

Nickel et al, A Three-Way Model for Collective Learning on
Multi-Relational Data, 2011

© Maximilian Nickel
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RESCAL

jth entity

i-th entity
LS

~

i-th entity
.

k-th relation =

l o &
\ k-th relation

= Step 1: Choose the representation (encoding) for entities and relations

© Maximilian Nickel

Entities: e; = Relation types:  w,

= Step 2: Choose scoring function for triples (h, r, t) = coordinates in the 3D tensor

sthr,t) =el -W, e,
= Step 3: Choose loss function

2 (T{h,r,t}—s(h,r,t) ) 2

hr,t
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DistMult — Simplified RESCAL

| DistMult: top performing KB embedding method
| Simplifies RESCAL; relation matrix only non-zero in diagonal

Triple: (h, r, t)
en ?t e

s(_,,)z(* |

| Geometric interpretation: Absolute value
is the volume of the 3D parallelogram spanned
by the three vectors

32 Summer School on Statistical Relational Artificial Intelligence hZ | = @



TransE - Relation Types as Translations

| TransE learns embeddings of entities and relations

(Tokyo, capitalOf, Japan)

K / N

| | o | | R | |

(Einstein, studentOf, Kleiner)

/ / S

| | o | | R | |
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TransE - Relation Types as Translations

| TransE learns embeddings of entities and relations

Shinzo Abe
Tokyo O

Berlin

O

Angela Merkel

O

Germany

| Geometric interpretation: Relation vector translates (moves)
head entity embedding to tail entity embedding

34 Summer School on Statistical Relational Artificial Intelligence hZ | = @



Knowledge Graph Representations

| Many alternative scoring functions have been proposed

Triple:

Scoring function

es €

(s, I, O)

Embeddings:
o Same size vectors

Model Scoring Function Relation parameters
RESCAL (Nickel etal., 2011) | eI W,e, W, € RK
TransE (Bordes et al., 2013b) | ||(es + w,) — €of|p w, € RE

o [1..D] . es W, e RED p c RK
NTN (Socher et al., 2013) ul fle,WiPle, + V, o | +0r) v :Rz KDy EER g
DistMult (Yang et al., 2015) | < w,, es, €, > w, € RE
HolE (Nickel et al., 2016b) wl (F~Y[Fles) © Fleo])) w, € RK
ComplEx Re(< wy, es,€, >) w, € CK

Trouillon et al. 2016
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Loss Functions

| Combines list of true triples with scoring function into a
differentiable loss function

| Challenge: open-world assumption - only positive examples
| Several losses have been proposed

Randomly corrupted tail

Positive margin (or head)

® Margin based loss

max(0,y + s(h,r, t) —s(h,r,t"))

® Softmax-based loss

exp(s(h,r,t)) )
Ztripleec exp(s(triple))

‘ C = N corrupted triples

—log(
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Evaluating KB Completion Methods

| There are several benchmark data sets

37

Summer School on Statistical Relational Artificial Intelligence

® FB15k P
% PRINCETON UNIVERSITY
e relsk2y A  ~ [rccbgse
° r8i2c A e
exical database 1or englis , ,
® WN18 Connections between things
o ..
motorcar
hatch-back ( compact ) (gas guzzlea

Data set FB15k | FB15k-num | FB15k-237 | FB15k-237-num WNIS | FB122

Entities 14,951 14,951 14,541 14,541 40,943 9,738

Relation types 1,345 1,345 237 237 18 122

Training triples 483,142 483,142 272,115 272,115 | 141,442 | 91.638

Validation triples 50,000 5.156 17.535 1,058 5,000 9.595

Test triples 59,071 6.012 20, 466 1,215 5,000 | 11,243

Relational features 90,318 90,318 7.834 7.834 14 47

NEC



Evaluation Procedure

| Most knowledge graph benchmarks come with a predefined
~ 80/10/10 split of the triples

|Train the model on the training triples, tune hyperparameters on
the validation triples, report metrics on the test triples

Test triple Substitute tail Compute scores
and rank
(h/ r, t) (11 r, tl) (11 r, t2)
(11 r, t2) (11 r, t4)
(11 r, t3) (1I r, t5=t)
(11 r, t4) (11 r, tl)
(11 r, tS) (11 r, t3)

| Apply quality measures for rankings

Summer School on Statistical Relational Artificial Intelligence




Evaluation Metrics — Hits@X

| Usually, other correct completions are removed

. (hl r, tZ) (11 r, t2)
Testiple ) (h, r, ts=t)

(h, r, t=t) W (h, 1, t)

(h, I, t) (11 r, tl) (11 r, t3)

(11 rl t3)

| Hits@X: “Is the correct entity among the top X ranked entities?”

(
(
(
(

39

1/ rl tZ) .

,-]’ r,t =t) 1 |f ZSX
NS ) Rank =2 =) 0 else

1/ rl t3)
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Evaluation Metrics —Mean Rank (MR)

| Mean rank (MR): “"The mean of the ranks of correct entity.”

Test triple
(h, r, t)

r, t2)
057U m Rank = 2

r, t1
r, t3)

~

~

NN NN
D IR I I
~

~

Compute average of all ranks
for all test triples
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Evaluation Metrics — Mean reciprocal rank

| Mean reciprocal rank (MRR): “The mean of the ranks of correct
entity.”

Test triple: (h, r, t)

r, t2)
0 5=Y m Rank = 2

r, T4
rl t3)

~

~

N AN AN AN
D D D IS
~

~

Compute average of the reciprocal
of the rank of correct entity

1
MRR = 2
rank(t)

teTest
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Some Recent Results

Filtered

Method WNI18 FB15k g

MR HI0O MRR | MR HI0 MRR | &
SE (Bordes et al., 2011) 985 805 - 162 398 -
Unstructured (Bordes et al., 2014) 304 382 - 979 6.3 -
TransE (Bordes et al., 2013) 251 R9.2 - 125 47.1 -
TransH (Wang et al., 2014) 303 B86.7 - 87 644 -
TransR (Lin et al., 2015b) 225 920 - 77 68.7 -
CTransR (Lin et al.. 2015b) 218 923 - 75 702 -
KG2E (He et al., 2015) 331 928 - 59 740 -
TransD (Ji et al.. 2015) 212 922 - 91 773 - o
IppTransD (Yoon et al., 2016) 270 943 - 78 787 - g
TranSparse (Ji et al., 2016) 211 932 - 82 795 - <
TATEC (Garcia-Duran et al., 2016) - - - 58 76.7 -
NTN (Socher et al., 2013) - 66.1 0.53 - 414 025
HolE (Nickel et al., 2016) - 949 0938 | - 739 0.524
STransE (Nguyen et al., 2016) 206 934 0.657 | 69 79.7 0.543
ComplEx (Trouillon et al., 2017) - 947 0941 | - 84.0 0.692
ProjE wlistwise (Shi and Weniger, 2017) | - - - 34 884 -
IRN (Shen et al., 2016) 249 953 - 38 92,7 -
RTransE (Garcia-Durdn et al., 2015) - - - 50 76.2 -
PTransE (Lin et al., 2015a) - - - 58 846 - -
GAKE (Feng et al., 2015) - - - 119 648 - é
Gaifman (Niepert, 2016) 352 939 - 75 842 -
Hiri (Liu et al., 2016) - 90.8 0.691 | - 70.3  0.603
R-GCN+ (Schlichtkrull et al., 2017) - 96.4 0819 | - 84.2 0.696
NLFeat (Toutanova and Chen, 2015) - 943 0940 | - 87.0 0.822 -
TEKE_H (Wang and Li, 2016) 114 929 - 108  73.0 - E
SSP (Xiao et al., 2017) 156 932 - 82 79.0 -
DistMult (orig) (Yang et al., 2015) - 942 083 - 577 035
DistMult (Toutanova and Chen, 2015) - - - - 79.7 0.555 o
DistMult (Trouillon et al., 2017) - 936 0.822 |- 824 0654 | §
Single DistMult (this work) 655 946 0.797 | 422 893 0.798 <
Ensemble DistMult (this work) 457 95.0 0.790 | 359 904 0.837

42

features

Methods generally sensitive to
hyperparameters such as loss, number
of negative examples, embedding dim, etc.

Well-tuned simple methods outperform
more complex models

Kadlec et al., Knowledge Base
Completion: Baselines Strike Back,
2017
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Survey Paper for Learning with KGs

| Nickel et al., A Review of Relational Machine Learning for
Knowledge Graphs. Proc. IEEE, 2015.
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Recent Developments

| Hyperbolic embeddings (Nickel et al. 2017)
| Useful for hierarchical knowledge graphs

Epoch O
MAP 0.104

N
\/

https://hazyresearch.github.io/hyperE/

———
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Knowledge Graph Embeddings

| What do they actually learn? <
; o) |
® Fine grainEd latent typeS of entities I (,;r';.'gé; Academ):;nd Grammy Award:
® Latent representation of relation types o

Soccer teams 5 S
e © °
°
o ° actors e
wars v %
° ° ° ° ° ° ° ° . oS
° ¢ o2 ° °
° ° o Lo °
. o « ethnicities—,_ ¢ 0 ©0,°% s
- o o © °
° °
°
° )
° " O o o ° ° °
o0 ~ O

-
o,
% SaQ <
00

| What do they not learn?

® Relational model with constants
® E.g., relation true if married to PersonX

o .
Film genres
° -

| Majority of KB embedding .ot
approaches are outperformed

by simple relational baselines WQ
® First observed by Toutanova et al, 2015 . ootbal.teams
® Holds true for dense KBs (e.g. FB15k) but - 2
not for sparser ones (e.g., FB15k-237) © Corby Rosset

® Embedding methods outperform purely
relational models on sparse KBs
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Alternative Matrix Representations

] Universal Schema (Riedel et al., 2013)

Text documents: relations from dependency parses Relation types
Pairs of entities . President Chancellor Chief Header of

o Prime of of e e e Leader of At HeadOf TopMember

ey Y Y v Y

¢t v v v

Fussio (I Y Y Y

Tl v v

V. RloBr;lnetty, v Y Y v

T‘?;:,‘I’:"’ Y Y Y

i Y Y © Riedel et al.

| Also used in conjunction with rule mining
approaches (Voelker and Niepert, 2011)

| More later ...

Movies

[0)

Users
Users

f(i)

Movies I]
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Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

TN Paths / random walks
_—

' ® locatedIn O capitalOf
Senso-ji Tokyo Japan

Local Neighborhoods
Michelle Gotoh Museum Murasaki Shikibu
'

J
Tokyo P

NB: Learning from local structures can capture global properties

through a recursive propagation process between nodes Sensd-ji
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Learning From Random Walks and Paths

| Basic idea: Mine frequent paths in the graph and use these
paths as features for some learning method

» Paths / random walks

locatedIn capital Of

O > >

Senso-ji Tokyo Japan
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Methods for Path Extraction

| Perform a large number of Random Walks

1961-08-04
Wa,
S&O’n

Paths / random walks

locatedIn capital Of

O > >0
Senso-ji Tokyo Japan
r ry
O > >
A B C
3 capitalOf
O >
A D B

| Keep the paths most frequently encountered

49
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Methods for Learning from Single-Relational Paths

| Interpret every walk as a sentence (sequence of nodes visited)
|Train word embedding method such as Word2vec

Tokyo
softmax
linear layer
mean
i | .
Senso-ji Tokyo Japan

Continuous bag of words

50 Summer School on Statistical Relational Artificial Intelligence hZ | = @



DeepWalk

e et

® T
&(v,) oM

(a) Random walk generation. (b) Representation mapping. (¢) Hierarchical Softmax.

*

Skip-gram
model

Results in node embeddings to be used for other tasks
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Methods for Learning from Multi-Relational Paths

| Interpret every walk as a logical rule:
“If path is present, then set feature to 1”

] Combine these features with simple classifier such as logistic
regression

Common path

/)QSC

iy, hasCapital locatedIn

= O 2®,
drs=

& locatedin
@ <«

United 7
States . ‘

Good feature to predict “locatedIn”

Lao and Cohen, Path Ranking Algorithm, 2010
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Other Methods for Mining Path-Like Features (I)

| Create table with one row per entity pair and one column per
relational type (coined “universal schema” in IE context)

| Perform association rule mining (Voelker and Niepert, 2011)

Text documents: relations from dependency parses Relation types
Pairs of entities President Prime of  Chancellor Chief Leader of  Header of HeadOf  TopMember
of of Executive state
Obama,
U.s. hd Y Y
GMerkeI, v v v v
ermany
S Harper,
Cananda E e b
V Putin,
Russia i L ¥ e
Larry Page, v v v
Google
V. Rometty,
IBM e Y Y %
Tim Cook,
Apple Y Y Y4
pa Y % © Riedel et al.

| PresidentOf(A, B) > HeadOf(A, B) etc.
] Only Horn clauses with same two variables per relation
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Other Methods for Mining Path-Like Features (II)

|AMIE (Galarraga et al. 2013) generalizes prior work by mining
closed horn rules such as R(A, B) ™~ R(B, C) > R(A, C)

| Closed rule: all variables appear at least in two relations
| Highly optimized for large knowledge graphs
| KBLRN (more later) uses this as the core rule miner

Dataset # of facts Settings Latest runtime
YAGO2 948048 Default 28.19s

YAGO2 948048 Support 2 facts 3.76 min
YAGOZ sample 46654 Support 2 facts 2.90s

YAGOZ 948048 Default + constants 9.93 min
YAGOZ2s 4122426 Default 59.38 min
DBpedia 2.0 6704524 Default 46.88 min
DBpedia 3.8 11024066 Default 7h 6 min
Wikidata (Dec 2014) 11296834 Default 25.50 min

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/amie/
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Other Methods to Learn from Known Rules (I)

| Extend existing KG embedding methods to learn from longer
paths (Guu et al. 2015)

locatedIn capital Of
Senso-ji Tokyo Japan
| | o | wm | & | |
Senso-ji locatedIn capitalOf Japan
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Other Methods to Learn from Known Rules (II)

| Use known rules to generate adversarial examples
(Minervini et al. 2017)

| If existing KB completion model maintain fact representations
that contradict a known rule, backpropagate to make
contradiction less likely

| Example
® Rule: (A, locatedIn B) and (B, capitalOf, C) > (A, locatedIn, C)

® Adversarial example:
High score High score Low score

locatedIn capitalOf locatedIn

O O O o O O

Senso-ji Tokyo Tokyo Japan Senso-ji Japan

56 Summer School on Statistical Relational Artificial Intelligence hZ | = @



Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

1961-08-04
Wa,

8oy,

7
70/7
s
male hasGenge,

\yName

» Local Neighborhoods
Gotoh Museum Murasaki Shikibu
) Japan
Tokyo P
=
Senso-ji

NB: Learning from local structures can capture global properties
through a recursive propagation process between nodes
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Representation Learning for Knowledge Graphs

| Observation: Effective representations are often

composed bottom-up from local representations
e Weight sharing
e Hierarchical features
e Model tractability

| Example: Convolutional neural networks

Input layer (S1) 4 feature maps

1 (CI) 4 feature maps (S2) 6 feature maps {C2) 6 feature maps
1 .

convolution layer sub-sampling layer convolution layer sub-sampling layer | fully connected MLP
l | pling lay! | ay! | pling lay! | fully |

© Yann LeCun
| Question: What is a suitable notion of locality in
knowledge graphs?

58 Summer School on Statistical Relational Artificial Intelligence NEC



Gaifman Locality

Knowledge graph Gaifman graph
Gotoh Museum Murasaki Shikibu Gotoh Museum Murasaki Shikibu

Japan Japan
Latitude: 36.21 TOkyO

Latitude: 35.65 Area: 378

Area: 2,2 Avg. salary: 482,163

Avg. salary: 520,060

Senso-ji Senso-ji

| Local sentences are sentences whose quantifiers range
over r-neighborhoods of the Gaifman graph

| Gaifman’s Locality Theorem:
“Every first-order sentence can be written as a Boolean

combination of local sentences.”
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Discriminative Gaifman Models

| The goal is to learn representations of r-neighborhoods for
which the query evaluates to true and false

| Query: (H?, capitalOf, T?)

| Basic idea: Sample local neighborhoods where query is
true and where query is false and use as training data

Sampled local neighborhood Relational Features Feature vector
D
Gotoh Museum Murasaki Shikibu 1. capitalOf(H, T) 0
=T hasArtAbout 2. capitalOf(T, H) 0
3 g 3. locatedIn(H,x) ——————_|
§ = 4. locatedIn(x, H) —\\9 0
< ] + 5. bornIn(T, x) —\N 2
apan 6. bornln(x, T) —
TOkyO 7. 3Axy:locatedIn(x, H) A !
hasArtAbout(x, y) A bornIn(y, T) _i 1
1
Senso-ji
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Training Gaifman Models

1. Given a target query (Tokyo, capitalOf, y?)

2. Sample a number of bounded-size neighborhoods of
pairs (A, B) for which (A, capitalOf, B) holds

3. Sample a number of bounded-size neighborhoods of
corrupted pairs (A’, B')

4. Evaluate relational features to generate vector
representation

5. Train a (deep) neural network model

3 [
» ;’;} || (W, H---Hwnr

c>'(°of M
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Inference in Gaifman Models

| Inference is performed by generating one (or more)
neighborhoods and querying the trained Gaifman model

(Tokyo, capitalOf, x?)

?¢%$WWW“

M
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Discriminative Gaifman Models

| Possible training objective

Vector representation of neighborhood
resulting from relational features

Probability returned by the Gaifman model l

L=—|> IOgZLl\A(VN) + ) log(1—pm(vy))

NeN NEN

N &4

Sampled positive and negative Gaifman neighborhoods
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Two Perspectives on Learning from Graph Data

2. Learning from Local Graph Structures

1961-08-04
Wa,

8oy,

7
70/7
s
male hasGenge,

\yName

» Local Neighborhoods
Gotoh Museum Murasaki Shikibu
) Japan
Tokyo P
=
Senso-ji

NB: Learning from local structures can capture global properties
through a recursive propagation process between nodes
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Strengths of CNNs

| Implicit feature hierarchy based on local features
| Parameter sharing across data points

Straightforward for regular graphs

. OO
L1 o S Re
30 4

: —O
OO0 -0

Challenging for irregular graphs

A Y o fo TR odes
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The Big Question of Graph CNNs

| How do we aggregate neighborhood information into fixed-
size representations? 2 requirement for weight sharing

u
l Aggregation “ (Latent) node

direction . features

Fixed-size tensor resulting
I ‘ from aggregation

| Feature transformations are applied locally for each node on
its neighborhood

| Requires ability to work with highly heterogeneous
neighborhood structures
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A Spectrum Of Methods

Patchy [ICML 2016]
Neighborhood
Normalization

'4 >

High variance
Low bias
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Learning CNNs for Graphs

Image CNN ﬂ Convolutional
» Grid graph required (spatial order) Network
« Works only for images
Z Y
O ) LI LT VT ITFrvrirrd
I I I Standard CNN E o -
I I I moves over image / / 4 J ... &89
Graph CNN
« Arbitrary input graph ﬂ Convolutional
- Node attributes Network P

» Edge attributes

N\

S Ay *
» el L
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Neighborhood Normalization

normalize
subgraph

receptive field

_______ reads vertex and edge IJ /
) \@ attributes = channels 3

C
C S
Qe 2
0, 2 K
% L S
Q@ 2 &
& Q o
o) . %
0 U 6
0 Q Q
¢ \) S 2
% ® S © & S
XS © © @ S @
O—®) ©—® O—E
) P DL P B e
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Feature Visualization

" motifs /earned by the model

small instances of input graphs

Summer School on Statistical Relational Artificial Intelligence



A Spectrum Of Methods

Patchy [ICML 2016]
Neighborhood
Normalization

@ @

High variance Low variance
Low bias High bias

GCN [ICLR 2017]
Average Pooling
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Graph Convolutional Networks

‘« (Latent) node
v features

mean-pool[ | ]
| Compute a weighted sum of the node features where weights

are determined by global node adjacency information
| Essentially average pooling of the (latent) node features
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Graph Convolutional Networks

73

Hidden layer

o
o
*—oe
o
o
* o
4
e
N
o \
® o
°
. o
o
..
® S
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Hidden layer
e
®
[ ]
® o
»
*—
N
[ }
® o
[&]
o
¢ o
o
® %

Kipf and Welling, 2017

RelLU

e V™

Qutput
| o
o
- ) =
o ®
Q
® o

© Thomas Kipf
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A Spectrum Of Methods

Patchy [ICML 2016]
Neighborhood
Normalization

@ ® @
High variance Low variance
Low bias High bias

| Generalization: MoNet (fixed number of weighted sums) ~

Gaussian mixture model but with fixed number of Gaussian
kernels

MoNet [CVPR 2017] GCN [ICLR 2017]
Coll. of weighted sums  Average Pooling
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Recent Methods for Learning from Neighborhoods

l Embedding Propagation (unsupervised, multi-modal, missing data)

Input data

Initial (incomplete) data

T8 *° =n
@ [@x@x 00| [000] [00X]
@ XxXxxx] [000] [xxXx]
@ [Oxxx0@] [000] [xxx]
@ [Oxex00] [000] [xxX]
@ [x@000Xx] [xxx] [00@]

l Induce graph

Knowledge graph

W ‘V'
A=
o &

data
?

)4

A piniyi
00000

DOQDD
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K'ig

Complete

10000

e
o
O
e

"embedding"

_functions

(@}

2 contrastive loss

©)

9 \ 4

©

O]

3

’ n G "

O propagate" error
X: missing values ~ O: masked out/zero

Interpretable
model

OHORORORCO
Sophisticated

®:valueof 1

Results




Recent Methods for Learning from Neighborhoods (II)

| Graph Attention Networks (extend idea of attention to graphs)
| Special case of MoNet

Petar VeliCkovi¢, 2018

a'ij
A
R
<
<
g
B
e
N
S concat/avg
—
a
. - . -
hd hd
Wh Wh;
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Some Practical Observations

77

Embedding methods learn latent type representations

Dichotomy of relational features: either work perfectly or fail
completely (random) - known to be brittle

Relational features outperform embedding methods on KBs
with dense relational structure

Embedding methods outperform relational methods in more

sparsely connected KGs; don’t depend on quality of rules

Combinations of the two are more robust and perform better
(Motivation for second part of the lecture)

Rank
Query Correctentity | TE GM
nationality(?, US) W. H. Macy 2 233
born_here(HK, ?) W. Chau-sang | 5 135
contains(?, Curtis-Inst) | USA 32 1
children(?, H. Roshan) | R. Roshan 26 1

Summer School on Statistical Relational Artificial Intelligence
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Some Practical Observations

| KG embedding methods are very versatile
| We have successfully used it for

® Product Recommendation 0 &
® Polypharmacy Predictions ) exoxo9 o wew @/@'
® Patient Outcome Prediction ~ & === == == 7] -
- @ [Oxxx0e] [coo] [eoe] n@ @*f’
® Drug Discovery Problems @ wosses T @ A
a xecoox [000] [ceel = @@
E Polypharmacyg
Doxycycline&\ side effects Simvastatin
r g ry E
Ciprofloxacin r1ﬂ Mupirocin
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Some Practical Observations

79

Simple methods tend to be more robust, that is, generalize
better in several application domains

Including more modalities (text, images, numerical features)
improves results (motivation for second part of lecture)

However, improvement over simple methods is modest for
the typical knowledge base completion benchmarks

Important in industrial applications to be able to incorporate
“relational features”, that is, known domain-specific rules

In industrial applications, there is inherent value in methods
that allow one to understand the rules used for
prediction > advantage of methods that do not learn a
purely latent representation (motivation for KBLRN)

Most industrial applications involve relational data and/or text
data (images and other modalities are more rare)
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