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Relational Learning

Learning a first-order logic theory from examples (in the
presence of uncertainty)

By searching for candidate hypotheses at first-order level or
through propositionalization
Relevant for the analysis of complex networks: drug design
in bioinformatics, link analysis in social networks, etc.
Related work: (probabilistic) ILP, deep networks, MLNs,
BLOG, StarAI (lifted inference), etc.

Hypothesis search (sound and sometimes complete at
inducing theories) can be costly (but see streaming ILP
(ILP’2013), online relational learning (ECML’12) and more
recent developments (including differentiable (d)ILP, JAIR
2018).



Introduction Preliminaries BCP Connectionist Inductive Logic Programming (CILP++) Results (CILP++) Relational Knowledge Extraction

Relational Learning in Neural-Symbolic Systems

A number of attempts at first-order (and higher-order) logic
learning in neural nets: semantic approach (Hitzler et al),
fibring, topos (Osnabruck), association (SHRUTI),
unification, etc.
Propositionalization offers a trade-off between information
loss and efficiency; it seems a natural choice for use with
neural nets.
CILP++ is a neural-symbolic system that can solve ILP
problems efficiently (through propositionalization) using a
neural network trained with backpropagation (França,
Zaverucha and d’Avila Garcez, Mach. Learn., July 2013)
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Efficient Relational Learning using CILP++

CILP++ is composed of:
Bottom Clause Propositionalization (BCP): creates a
bottom clause for each positive and negative ILP example
Artificial Neural Networks (ANNs) trained with
backpropagation: generalising from a set of bottom clauses
given as binary vectors (c.f. Muggleton and
Tamaddoni-Nezhad, QG-GA, Mach. Learn. 2008)
Presenting the trained knowledge in relational form:
mapping trained features into first-oder logic
representations (ICCSW 2013, Dagstuhl OASIcs, 2013)
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Summary of Results on Relational Learning

CILP++ vs. ILP system Aleph
CILP++ achieved comparable accuracy while being
consistently faster
Standard backprop vs. early stopping: trade-off between
accuracy and efficiency

BCP vs. the propositionalization component of RSD
(Železný and Lavrač, 2006)

BCP achieved overall better accuracy and was faster
BCP with neural nets is much better than RSD with neural
nets; BCP with C4.5 is comparable to RSD with C4.5
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Summary of Results on Relational Knowledge
Extraction

Initial evaluation of FOL rules learned by CILP++
(BCP-rules), extracted from the neural network trained
using BCP propositionalization:

We compared BCP-rules with rules produced by Aleph (we
used RIPPER (Cohen, 1995) as the rule learner, but other
propositional rule learners can be used)
As expected, there is information loss in comparison with
Aleph, but in exchange for considerable speed-ups and
smaller (more compact) rule sets
Although our extraction algorithm shows good fidelity to
network, the lifting of FOL rules from trained neural nets
can improve accuracy!

Experiments on FOL knowledge extraction from neural
networks have been limited and are ongoing. Next step:
use macro operators (R. Mooney) with CILP++
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A simple example: Family Relationship

BCP: generates a bottom clause for each (positive or
negative) example; converts each bottom clause into a
binary vector (similarly to QG-GA)

Background Knowledge: Positive Examples:
mother(mom1, daughter1) motherInLaw(mom1, husband1)
wife(daughter1, husband1) Negative Examples:
wife(daughter2, husband2) motherInLaw(daughter1, husband2)

Using Progol’s bottom clause algorithm (Muggleton, 1995):
⊥+ = [motherInLaw(A,B)← mother(A,C),wife(C,B)]
⊥− = [motherInLaw(A,B)← wife(A,C)]

BCP features: mother(A, C), wife(C, B), wife(A, C)
Hypothesis: Is the use of a set of bottom clauses useful for
learning and generalization?
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Neural networks and Backpropagation

Popular connectionist models with application in many
areas: pattern recognition, games, vision, speech, control
CILP++ uses a multi-layer perceptron (MLP) with three
layers of artificial neurons connected in a feed-forward
manner; one could use a deep network instead, or even a
recurrent network as used by CILP.
Error back-propagation is a widely used training algorithm
for MLPs; it seeks to minimize an error function through
gradient descent
When using error back-propagation, a common way of
dealing with overfitting is to use early stopping
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Early stopping

Early stopping aims to avoid overfitting (Caruana et. al.,
2000) by using a validation set as stopping criteria
The main early stopping criteria are:

Stop when the ratio between the validation error and the
current training epoch error gets higher than a specified α;
Stop when the sum of the current epoch’s training and
validation errors becomes smaller than a specified β for m
consecutive epochs;
Stop when the validation error keeps increasing for n
consecutive epochs.

There is empirical evidence that the first criterion leads to
fair accuracy and faster convergence (Prechet (1997)),
thus it is used by CILP++
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The CILP Translation Algorithm (revisited)

BK = {A ← B, C; B ← C, not D, E; D ← E}
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Bottom Clause Propositionalization (BCP)

BCP uses Progol’s bottom clause generation to create
features for each ILP example
Each positive example is saturated normally and labeled
as positive (1); negative examples are processed just like
positive ones, but are labeled as negative (-1)
All unifications made during bottom clause generation are
stored into hash sets
A feature table F is created, consisting of all distinct body
literals from all the bottom clauses created
Finally, a binary input vector v of size |F | is created for
each example (set of features) (∀i , v(i) ∈ {0,1})
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BCP (cont.)

Background Knowledge: Positive Examples
mother(mom1, daughter1) motherInLaw(mom1, husband1)
wife(daughter1, husband1) Negative Examples
wife(daughter2, husband2) motherInLaw(daughter1, husband2)

Continuing the family relationship example:
⊥+ = [motherInLaw(A,B)← mother(A,C),wife(C,B)]
⊥− = [motherInLaw(A,B)← wife(A,C)]

From ⊥+, hash+:
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BCP (cont.)

Key Value
mom1 A

husband1 B
daughter1 C

Key Value
daughter1 A
husband2 B
husband1 C

From ⊥−, hash−:
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BCP (cont.)

Key Value
mom1 A

husband1 B
daughter1 C

Key Value
daughter1 A
husband2 B
husband1 C

F = {mother(A,C),wife(C,B),wife(A,C)}
v+ = (1,1,0)
v− = (0,0,1)
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Network training

1 The network is fully-connected with near-zero weight
connections

2 Positive examples are associate with a label y = 1 and
negative examples with y = −1

3 The heuristic chosen to calculate the training error E is
standard mean-squared error:

E =
n∑

i=1

(yi−ȳi )
2

2 , where yi and ȳi are the label and network

output, respectively
4 Both standard stopping criteria and early stopping have

been evaluated
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Stopping criteria

Standard stopping criteria:
300 training epochs have elapsed
95% of the training data satisfies E < 0.1
90% of the training data is correctly classified by the
network and no improvements can be seen for 5 training
epochs

Early stopping:
A validation set with 1

5 of the total set of examples was
created
At time t , the best model from epochs 1 to t is stored
If after epoch e, the condition (first criterion of Prechet,
1999)
GL(t) > α, GL(t) = 0.1 ∗

(
Eva(e)
Eopt (t) − 1

)
is satisfied, training

stops
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Building the network and training

1) motherInLaw(A,B) :- mother(A,C), wife(C,B) 
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Description of the Experiments

Four CILP++ configurations have been tested:
st : uses standard backpropagation stopping criteria
es: uses early stopping
n%bk : the network is created using n% of the examples in
(E train
⊥ ) as BK1

2h: when n = 0, the network uses 2 hidden neurons only!
Why two hidden neurons in the 2h configurations?

It can help avoid overfitting in large networks
Accuracy doesn’t seem to increase substantially with more
than 2 hidden neurons when the input is a binary vector
(Haykin, 2009)

1n = 0, 2.5 and 5 were used.
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Experimental Results – Accuracy vs. Runtime

18 França et. al.

Table 2 Accuracy (standard deviation) results and runtimes (in % for accuracy and in hh:mm:ss format for
runtimes) for st configurations. It can be seen that Aleph and CILP++ present comparable accuracy results for
the standard CILP++ configurations, with the st,2.5%bk model winning on three datasets. CILP++ performs
faster in most cases, confirming our expectation that relational learning through propositionalization should
trade accuracy for efficiency, in comparison with full first-order ILP learners.

Dataset Aleph CILP++st,2.5%bk CILP++st,5%bk CILP++st,2h

mutagenesis 80.85∗(±10.5) 91.70(±5.84) 90.65(±8.97) 89.20(±8.92)
0:08:15 0:10:34 0:11:15 0:10:16

krk 99.6(±0.51) 98.31∗(±1.23) 98.32∗(±1.25) 98.42(±1.26)
0:11:03 0:04:38 0:04:34 0:04:40

uw-cse 84.91(±7.32) 66.24∗(±7.01) 66.08∗(±2.48) 70.01∗ (±2.2)
0:45:47 0:08:47 0:10:19 0:08:54

alz-amine 78.71(±5.25) 78.99(±4.46) 76.02∗(±3.79) 77.08(±5.17)
1:31:05 1:23:42 2:07:04 1:14:21

alz-acetyl 69.46(±3.6) 63.64∗(±4.01) 63.49∗(±4.16) 63.30∗(±5.09)
8:06:06 4:20:28 5:49:51 2:47:52

alz-memory 68.57(±5.7) 60.44∗(±4.11) 59.19∗(±5.91) 59.82∗(±6.76)
3:47:55 1:41:36 2:12:14 1:19:27

alz-toxic 80.5(±3.98) 79.92(±3.09) 80.49(±3.65) 81.73(±4.68)
6:02:05 3:04:53 3:33:17 2:12:17

applicable to numerical or propositional data only, thus we could not compare those results
with Aleph. Hence, we do not report those results in the accuracy tables above. Neverthe-
less, with SMOTE, CILP++ obtained 93.34%, 90.11% and 93.58% accuracy for the es,2h,
es,2.5%bk and es,5%bk configurations, respectively. None of the networks took longer than
6 minutes to run (train and test) on all 5 UW-CSE folds, including the SMOTE and un-
dersampling pre-processing. In st configurations, CILP++ obtained 73.44% for st,2.5%bk,
77.35% for st,5%bk and 74.2% for st,2h, with no configuration taking longer than 9 minutes
to run completely. Those results indicate that an adequate ANN data pre-processing, enabled
by the BCP method, can improve results considerably.

So far, we have explored a number of CILP++ configurations. The use of other config-
urations and their combination through tuning sets is possible. However, the ILP literature
on Aleph generally reports a single optimal configuration per dataset (and not per fold)
(Paes et al., 2007; Landwehr et al., 2007). We believe, therefore, that applying tuning sets to
CILP++ would lead to an unfair advantage to the network model, for the sake of comparison
with Aleph. Nevertheless, an optimal CILP++ configuration would use tuning sets, and we
report those results below on Table 4. A three-fold internal cross validation was applied on
the training set of each one of the 10 folds used in Tables 2 and 3. The fold accuracy of the
best model, chosen with tuning sets, is then chosen for that fold. Thus, the dataset accuracy
of CILP++ using tuning sets is the average of the accuracy obtained for each fold with the
model that obtained the best tuning set accuracy. We also report the runtimes obtained with
this approach and the “best” model for each dataset, which is the one that is chosen the most
times, for the 10 folds. The best model results shown in the table below were used to guide
our choice of model in the experiments on feature selection and BCP to follow.

bold = best result; * indicates statistically significant difference

CILP++ achieves better accuracy and runtime in one st
configuration
CILP++{st,2h} is generally faster than Aleph
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Experimental Results with early stoppingRelational Learning with BCP in ANNs 19

Table 3 Accuracy (standard deviation) results and runtimes for the CILP++ configurations with early stop-
ping (in % for accuracy and in hh:mm:ss format for runtimes). Using es models, CILP++ was much faster
than Aleph but with a considerable decrease in accuracy. Aleph won in accuracy in all but the Mutagenesis
dataset. This indicates that early stopping is not recommended in general for use with BCP, unless speed is
paramount.

Dataset Aleph CILP++es,2.5%bk CILP++es,5%bk CILP++es,2h

mutagenesis 80.85(±10.51) 83.48(±7.68) 83.01(±10.71) 84.76(±8.34)
0:08:15 0:01:25 0:01:43 0:01:50

krk 99.6(±0.51) 98.16∗(±0.83) 96.33∗(±4.95) 98.31(±1.23)
0:11:03 0:04:08 0:04:28 0:04:18

uw-cse 84.91(±7.32) 68.16∗(±4.77) 65.69∗(±1.81) 67.86∗(±1.79)
0:45:47 0:04:08 0:04:16 0:04:08

alz-amine 78.71(±3.51) 65.33∗(±9.32) 65.44∗(±5.58) 70.26∗ (±7.1)
1:31:05 0:35:27 0:08:30 0:10:14

alz-acetyl 69.46(±3.6) 64.97∗(±5.81) 64.88∗(±4.64) 65.47∗(±2.43)
8:06:06 3:04:47 2:42:31 0:25:43

alz-memory 68.57(±5.7) 53.43∗(±5.64) 54.84∗(±6.01) 51.57∗(±5.36)
3:47:55 1:40:51 3:57:39 1:33:35

alz-toxic 80.5(±4.83) 67.55∗(±6.36) 67.26∗ (±7.5) 74.48∗(±5.62)
6:02:05 0:12:33 0:14:04 0:28:39

Table 4 Results using tuning sets for CILP++. We report three results in this table, from left to right: CILP++
accuracy using tuning sets averaged over the six CILP++ configurations, CILP++ runtime using tuning sets,
and best model, i.e. the configuration with most wins on the 10 train/test folds (5 train/test folds, in the case
of UW-CSE). Overall, the best st model is the st,2.5%bk configuration, the best es model is the es,2h model,
and the best model overall is the st,2.5%bk model.

Dataset Test Set Accuracy Runtime Best model

mutagenesis 88.84(±10.48) 0:07:54 st,5%bk (3/10)
krk 96.75(±4.9) 0:04:19 st,2h (8/10)
uw-cse 66.84(±7.32) 0:06:11 st,2.5%bk (2/5)
alz-amine 76.45(±3.45) 1:31:11 st,2.5%bk (6/10)
alz-acetyl 64.07(±6.2) 0:30:35 es,2h (7/10)
alz-memory 59.67(±5.7) 1:51:02 st,2.5%bk (4/10)
alz-toxic 81.73(±4.68) 2:12:17 st,2h (10/10)

In comparison with the results reported in Tables 2 and 3, the tuning sets results were
slightly lower than the results of the best individual models, but better than most of them. Ad-
ditionally, we applied tuning sets also in the version of UW-CSE which we applied SMOTE
and undersampling, where we obtained 81.12% and CILP++ took less than 8 minutes to fin-
ish, which is considerably better than the obtained results with UW-CSE without SMOTE.
In the following experiments (feature selection analysis and BCP results), we choose the
best models obtained from tuning sets for further analysis.

Considerable speed-ups are obtained, in exchange for
accuracy at times
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Comparison with another Propositionalization

20 França et. al.

4.2 Comparative Results with Propositionalization

In this section, comparative results against RSD are carried out, using the datasets Mu-
tagenesis (named muta in the table below) and KRK (the reason for this choice of datasets
is explained in the previous section). In Table 5, accuracy and runtimes are shown. We com-
pare both BCP and RSD propositionalization when generating training patterns for CILP++
(labeled ANN in the table) and for the C4.5 decision tree learner. Aleph results are shown as
well as baseline. We use the CILP++ configuration that obtained the best results in the tun-
ing sets for each dataset. Values in bold are the highest obtained, and the difference between
those and the ones marked with (*) are statistically significant by two-tailed, unpaired t-test
(we use unpaired t-test because of the RSD tool implementation issue, mentioned earlier).
All experiments were also run on a 3.2 Ghz Intel Core i3-2100 with 4 GB RAM.

Table 5 Accuracy and runtime results for Mutagenesis and KRK datasets (in % for accuracy and in hh:mm:ss
format for runtimes). The results show that BCP is faster than RSD, while showing highly competitive results
w.r.t. Aleph, but RSD performed as well as BCP when using C4.5 as learner. BCP outperformed RSD in
all models: BCP was faster in all cases, but in the KRK dataset, RSD with C4.5 showed higher accuracy,
although the difference was not statistically significant. The results also show that BCP performs well with
both learners (ANN and C4.5), but excels with ANN. On the other hand, RSD did not perform well with
ANN.

Dataset Aleph BCP+ANN RSD+ANN BCP+C4.5 RSD+C4.5

muta 80.85∗ (±10.51) 89.20(±8.92) 67.63∗ (±16.44) 85.43∗ (±11.85) 87.77(±1.02)
0:08:15 0:10:16 0:11:11 0:02:01 0:02:29

krk 99.6(±0.51) 98.42∗ (±1.26) 72.38∗ (±12.94) 98.84∗ (±0.77) 96.1∗ (±0.11)
0:11:03 0:04:40 0:06:21 0:01:59 0:05:54

In summary, our hypothesis was that BCP, as a standalone propositionalization method,
can be fast and is capable of generating accurate features for learning. The results indicate
that BCP is a good match for ANN, indicating the promise of the CILP++ system. BCP
performs on a par with RSD when integrated with C4.5. BCP is also faster than RSD in all
cases, empirically confirming our hypothesis.

4.3 Results with Feature Selection

In Section 2.4, it was discussed that, due to the extensive size of bottom clauses, fea-
ture selection techniques may obtain improved results when applied after BCP. Two ways
of performing feature selection were discussed: changing the variable depth (see Algorithm
1) and using a statistical method, mRMR. We have chosen two datasets on which to run
these experiments with feature selection: Alz-amine and Alz-toxic. We opted for those be-
cause CILP++ performed well on them, not outstandingly well (as in Mutagenesis), neither
poorly (as in Alz-acetyl). Additionally, we have chosen the best st configuration (st,2.5bk,
chosen by tuning sets) and the best es configuration (es,2h). Even though the tuning set re-
sults showed st,2h as the best model for the Alz-toxic dataset, we wanted to analyze feature
selection on es configurations as well, and so we have chosen the best es configuration.

First, we changed the variable depth in Alz-amine and Alz-toxic, which was 3, to 2 and 5,
to analyze how changes in this parameter would affect performance. The results are shown

BCP achieves better accuracy than RSD overall, while
being slightly faster
Accuracy of BCP with ANNs is much higher than RSD with
ANNs
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Relational Knowledge Extraction

Since BCP features (and neurons) are first-order literals, it
should be possible to extend the CILP knowledge
extraction algorithm directly to obtain first-order rules from
trained CILP++ networks
...but such rules will not obey any ILP restrictions as
imposed by a language bias
França et. al., ICCSW’13, AAAI Spring Symposium 2015,
contain a first proposal towards an efficient relational
knowledge extraction algorithm using the propositional rule
learner RIPPER (other rule learner could be used)
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From CILP++ networks to FOL rules

Search for literals whose variables do not obey the
ILP-style variable chaining
Using BCP’s hash tables, replace such variables by a
disjunction of ground terms
This transformation is provably correct: BCP feature
equivalence theorem
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Example: Family relationship revisited

4 Relational Knowledge Extraction from Attribute-Value Learners

By using RIPPER on data propositionalized with BCP, a set of rules is created. From an
ILP point of view, those rules do not necessarily obey variable chaining properties or any
kind of language bias restrictions: each feature (i.e. each distinct bottom clause atom) is seen
as propositional features by RIPPER and thus, further processing needs to be done in order
to treat it as first-order. As an example, consider the following propositionalized dataset:

S⊥ = {motherInLaw(A,B) : − mother(C,B), wife(C,D); (1)
motherInLaw(A,B) : − mother(A,C), wife(C,B);

∼ motherInLaw(A,B) : − wife(C,B), parents(C,B,D), dad(E,F )}.

From this dataset, one possible rule generated by RIPPER (containing features from
positive examples and negated features from negative examples), in Prolog format, could be:

R⊥ = {motherInLaw(A,B) : − mother(A,C), wife(C,D), not(dad(E,F ))}. (2)

The first point worth noticing regarding R⊥ is that it can represent the absence of a BCP
feature, e.g. not(dad(E,F )), which is equivalent to negation as failure [?] and shows that
the rules we generate have more representational power. The second point is that there is a
problem with the generated BCP-rule R⊥, if it is treated directly as first-order: the variables
of dad(E,F ) are not present in any other body or head atom (from now on, we will refer
to those variables as unconstrained variables). This is possible to happen due to the fact
that all atoms are seen as features generated by BCP, thus not taking into consideration the
language bias. If R⊥ is used as theory to infer unseen first-order data, as long as there is at
least one dad/2 ground atom1 inside the background knowledge, dad(E,F ) would always
be true and thus, not(dad(E,F )) would always be false and R⊥ would always be false as
well, thus limiting the generalization capabilities of R⊥. In order to solve this issue, after
generating BCP-rules using RIPPER and obtaining a set of BCP-rules R⊥, all unconstrained
variables need to be removed from R⊥ before treating it as a first-order theory.

The process of extracting first-order rules from BCP-rules can be divided into three steps:
unconstrained variables search, unconstrained variables replacing and first-order filtering. In
the first step, unconstrained variables search, a search is done in the BCP-rules to find literals
with unconstrained variables (i.e., finding all occurrences of literals such as not(dad(E,F ))
in R⊥ above). We detect unconstrained variables from the rightmost literal to the leftmost
one, by verifying if the variable being checked, belonging to a body literal li, appears on
any other body literal in {lj |j < i}. For each BCP-rule r ∈ R⊥, we store unconstrained
variables (and the literals where they were found) to be used in the next step of our algorithm,
unconstrained variables grounding.

As an example, let us use the R⊥ defined in (2) as input for unconstrained variables
search. Firstly, unconstrained variables are searched in the single clause of R⊥, from the
right to the left. In the rightmost literal, not(dad(E,F )), two unconstrained variables are
found: E and F . Because of that, both variables and the literal where they were found are
stored. After advancing to the next rightmost literal, one more unconstrained variable is
found: D. Thus, D is stored for the next part of our algorithm, together with the literal
wife(C,D) where it was found. Note that the other variable, C, is not included, since it
appears in mother(A,C) and thus, it is not unconstrained. Since no more unconstrained
variables can be found, the first step of our extraction algorithm comes to an end with the
following variables/literals stored: M ={E,F, not(dad(E,F )); D,wife(C,D)}.

1 Ground atoms are atoms which does not contain variables, only constants.

4 Relational Knowledge Extraction from Attribute-Value Learners

By using RIPPER on data propositionalized with BCP, a set of rules is created. From an
ILP point of view, those rules do not necessarily obey variable chaining properties or any
kind of language bias restrictions: each feature (i.e. each distinct bottom clause atom) is seen
as propositional features by RIPPER and thus, further processing needs to be done in order
to treat it as first-order. As an example, consider the following propositionalized dataset:

S⊥ = {motherInLaw(A,B) : − mother(C,B), wife(C,D); (1)
motherInLaw(A,B) : − mother(A,C), wife(C,B);

∼ motherInLaw(A,B) : − wife(C,B), parents(C,B,D), dad(E,F )}.

From this dataset, one possible rule generated by RIPPER (containing features from
positive examples and negated features from negative examples), in Prolog format, could be:

R⊥ = {motherInLaw(A,B) : − mother(A,C), wife(C,D), not(dad(E,F ))}. (2)

The first point worth noticing regarding R⊥ is that it can represent the absence of a BCP
feature, e.g. not(dad(E,F )), which is equivalent to negation as failure [?] and shows that
the rules we generate have more representational power. The second point is that there is a
problem with the generated BCP-rule R⊥, if it is treated directly as first-order: the variables
of dad(E,F ) are not present in any other body or head atom (from now on, we will refer
to those variables as unconstrained variables). This is possible to happen due to the fact
that all atoms are seen as features generated by BCP, thus not taking into consideration the
language bias. If R⊥ is used as theory to infer unseen first-order data, as long as there is at
least one dad/2 ground atom1 inside the background knowledge, dad(E,F ) would always
be true and thus, not(dad(E,F )) would always be false and R⊥ would always be false as
well, thus limiting the generalization capabilities of R⊥. In order to solve this issue, after
generating BCP-rules using RIPPER and obtaining a set of BCP-rules R⊥, all unconstrained
variables need to be removed from R⊥ before treating it as a first-order theory.

The process of extracting first-order rules from BCP-rules can be divided into three steps:
unconstrained variables search, unconstrained variables replacing and first-order filtering. In
the first step, unconstrained variables search, a search is done in the BCP-rules to find literals
with unconstrained variables (i.e., finding all occurrences of literals such as not(dad(E,F ))
in R⊥ above). We detect unconstrained variables from the rightmost literal to the leftmost
one, by verifying if the variable being checked, belonging to a body literal li, appears on
any other body literal in {lj |j < i}. For each BCP-rule r ∈ R⊥, we store unconstrained
variables (and the literals where they were found) to be used in the next step of our algorithm,
unconstrained variables grounding.

As an example, let us use the R⊥ defined in (2) as input for unconstrained variables
search. Firstly, unconstrained variables are searched in the single clause of R⊥, from the
right to the left. In the rightmost literal, not(dad(E,F )), two unconstrained variables are
found: E and F . Because of that, both variables and the literal where they were found are
stored. After advancing to the next rightmost literal, one more unconstrained variable is
found: D. Thus, D is stored for the next part of our algorithm, together with the literal
wife(C,D) where it was found. Note that the other variable, C, is not included, since it
appears in mother(A,C) and thus, it is not unconstrained. Since no more unconstrained
variables can be found, the first step of our extraction algorithm comes to an end with the
following variables/literals stored: M ={E,F, not(dad(E,F )); D,wife(C,D)}.

1 Ground atoms are atoms which does not contain variables, only constants.

hash = {D/husband2, D/daughter1, E/husband1,
F/daughter1}

From the BCP feature equivalence:
not(dad(E ,F )) 7→ not(dad(husband1,daughter1))

wife(C,D) 7→ wife(C,daughter1) ∨ wife(C,husband2)

The resulting first-order rule is:

6 Relational Knowledge Extraction from Attribute-Value Learners

We now can solve the problem of BCP-rules having unconstrained variables by replacing
them with disjunctions of grounding unifications (we call those unified BCP-rules constrained
BCP-rules). We illustrate the second step of our algorithm by continuing our family
relationship example. From the first step of our relational knowledge extraction algorithm, we
have obtained a list of variables that are unconstrained and need to be replaced: E and F , from
feature not(dad(E,F )), and D, from feature wife(C,D). From (1), one example contains
the feature not(dad(E,F )) and two contain feature wife(C,D). Thus, not(dad(E,F )) is
replaced by one grounded literal and wife(C,D) is replaced by a disjunction of two grounded
literals, by applying Theorem 2 and using the previously specified hash entries for those
examples: {D/husband1}, {D/daughter1}, {E/husband2} and {F/daughter1}. Those
replacements are {not(dad(E,F )) 7→ not(dad(husband1, daughter1))} and {wife(C,D) 7→
wife(C, daughter1) ∨ wife(C, husband2)} and thus, the resulting constrained BCP-rule set
RC

⊥ after replacing R⊥ from (2) with the created grounded atoms (in prolog format) is

RC
⊥ = {motherInLaw(A,B) : −mother(A,C), (wife(C, daughter1);wife(C, husband2)),

not(dad(husband1, daughter1))}.

Lastly, in first-order filtering, we apply a modified version of the theory filtering algo-
rithm T-reduce [20], a companion program to Aleph, in theory RC

⊥. The original T-reduce
algorithm is capable of removing rules that do not cover any first-order training example
and rules that contribute negatively to the theory accuracy. We modified T-reduce to
also to cut out redundant literals and literals that do not have variables on it. Literals
without variables need to be removed for the same reason the unconstrained variables of
not(dad(E,F )) need to be replaced: depending on the background knowledge, those literals
are always true or always false, thus contributing negatively to the rule’s ability to generalize.
As an example, if our version of T-reduce is applied on RC

⊥, assuming that RC
⊥ is non-

redundant (otherwise it would be removed by T-reduce), we obtain the final first-order theory
RF OL

⊥ = {motherInLaw(A,B) :- mother(A,C), (wife(C, daughter1);wife(C, husband2))},
since not(dad(husband1, daughter1)) does not have variables on it.

To illustrate the whole process of extracting first-order rules from BCP-rules, our complete
procedure is summarized in Algorithm 1. It receives as input a set of BCP-rules R⊥ and
outputs a set RF OL

⊥ of extracted first-order rules.

Algorithm 1 First-order Rules Extraction from BCP-rules
1: RF OL

⊥ = ∅
2: Let U be the set of unconstrained variables and their respective literals inside R⊥
3: for each rule r of R⊥ do
4: Apply Theorem 2 by using U on r to obtain a constrained clause cr

5: Apply (modified) T-reduce on cr to obtain a filtered clause rtreduce

6: Check if rtreduce contributes positively towards accuracy; if not, discard it
7: Add rtreduce to RF OL

⊥ , if it has not been discarded
8: end for
9: return RF OL

⊥

4 Initial Results

In this section, we present the experimental methodology and initial results for our relational
knowledge extraction algorithm. We show comparative results between the ILP system
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First-order filtering

We can improve results further by making the theory more
compact
A modified version of the theory filtering algorithm T-reduce
(A. Srinivasan, The Aleph System, version 5) is applied

Original T-reduce: removes sets of rules without positive
coverage or that contribute negatively to training set
accuracy
Modified T-reduce: also removes literals that are always
true, and literals containing no variables

If applied on RC
⊥:
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As an example, if our version of T-reduce is applied on RC
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⊥ is non-

redundant (otherwise it would be removed by T-reduce), we obtain the final first-order theory
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⊥ = {motherInLaw(A,B) :- mother(A,C), (wife(C, daughter1);wife(C, husband2))},
since not(dad(husband1, daughter1)) does not have variables on it.

To illustrate the whole process of extracting first-order rules from BCP-rules, our complete
procedure is summarized in Algorithm 1. It receives as input a set of BCP-rules R⊥ and
outputs a set RF OL

⊥ of extracted first-order rules.

Algorithm 1 First-order Rules Extraction from BCP-rules
1: RF OL

⊥ = ∅
2: Let U be the set of unconstrained variables and their respective literals inside R⊥
3: for each rule r of R⊥ do
4: Apply Theorem 2 by using U on r to obtain a constrained clause cr

5: Apply (modified) T-reduce on cr to obtain a filtered clause rtreduce

6: Check if rtreduce contributes positively towards accuracy; if not, discard it
7: Add rtreduce to RF OL

⊥ , if it has not been discarded
8: end for
9: return RF OL

⊥

4 Initial Results

In this section, we present the experimental methodology and initial results for our relational
knowledge extraction algorithm. We show comparative results between the ILP system
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Experimental settings

We have evaluated the approach (named BCP+RIPFOL) in
comparison with:

Aleph (as a baseline)
BCP + RIPPER (named BCP+RIPprop)

We use the Alzheimers benchmark for comparison
The used metrics for evaluation are:

Classification accuracy
Runtime
Theory size (i.e. total number of literals)
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Initial Results

Alz-ami Alz-ace Alz-mem Alz-tox

Aleph 78.71(±5.25) 69.46(±4.6) 68.57(±5.7) 80.5(±4.83)
(baseline) 1:31:05, 36.1 8:06:06, 47.3 3:47:55, 45.7 6:02:05, 37.9

BCP+RIPprop 73.35(±4.32) 67.8(±3.77) 65.27(±7.11) 78.44(±5.44)
0:19:49, 30 0:23:21, 20.1 0:25:11, 14.4 0:17:41, 35.2

BCP+RIPFOL 77.73(±4.57) 63.56(±5.06) 57.64(±5.7) 66.45(±6.93)
0:21:59, 30.4 0:26:39, 18.7 0:28:45, 13.8 0:20:57, 18

Accuracy and theory size averaged over 10-fold cross-validation

As expected, Aleph’s accuracy is superior
But we produce first-order theories that are more compact
And the accuracy of BCP+RIPFOL is even higher than
BCP+RIP in one case
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In Summary

CILP++: Competitive accuracy results can be obtained
efficiently using a neural-symbolic approach; in principle,
any ILP dataset can be used with CILP++
BCP can be used with any propositional learner (although
some don’t seem to like the idea of bottom clauses very
much)
Relational Knowledge Extraction: capable of generating
compact first-order rule sets with negation from trained
neural nets
Considerably faster than Aleph, but sometimes with
(sometimes considerable) accuracy loss
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Next Steps

Evaluation of noise robustness and evaluation in theory
revision tasks (with negation)
Apply to first-order knowledge extraction from neural
networks in general (compare with TREPAN and its
variations)
Compare accuracy results with other fast and hybrid ILP
approaches, including differentiable ILP
A lot of the magic seems to happen in the choice (and
number of copies) of first-order literals to place in the input
and output layers: use macro-operators!?
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