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Fuzzy Logic

LTN language

LTN uses the language of first-order many-valued logic, specifically fuzzy
logic in the narrow sense, i.e. symbolic logic with a comparative notion of
truth, syntax, semantics, axiomatization, truth-preserving deduction,
completeness, etc.

Petr. Hájek. Metamathematics of Fuzzy Logic, volume 4 of
Trends in Logic- Studia Logica Library.
Dordrecht/Boston/London, 1998.
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Fuzzy sets and crisp sets

In classical mathematics one deals with collections of objects called
sets.

it is convenient to fix some universe U in which every set is assumed
to be included.

It is also useful to think of a set A as a function from U which takes
value 1 for objects which belong to A and 0 for all the rest.

Such function is called the characteristic function of A, χA(·):

χA(x) =def

{
1 if x ∈ A
0 if x 6∈ A

So there exists a bijective correspondence between characteristic
functions and sets
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Crisp sets
Example

Let U be the set of all real numbers between 0 and 10 and let A = [5, 9]
be the subset of X of real numbers between 5 and 9. This results in the
following figure:
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Fuzzy sets

Fuzzy sets generalise this definition, allowing elements to belong to a
given set with a certain degree.

Instead of considering characteristic functions with value in {0, 1} we
consider now functions valued in the interval [0, 1].

A fuzzy subset F of a set U is a function µF (·) assigning to every
element x ∈ U the degree of membership of x to F :

µF : U → [0, 1]
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Fuzzy set

Example (Cont.)

Let, as above, U be the set of real numbers between 1 and 10. A
description of the fuzzy set of real numbers close to 7 could be given by
the following figure:

L. Serafini (FBK), M. Spranger (Sony)) Introduction to LTNs August 29, 2018 6 / 47



Crisp and fuzzy sets
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Operations between sets

In classical set theory there are some basic operations defined over
sets.

Let U be a set and 2U be the set of all subsets of U, or, equivalently,
the set of all functions in U → {0, 1}.
The operation of union, intersection and complement are defined in
the following way:

A ∪ B = {x | x ∈ A or x ∈ B} χA∪B(x) = max(χA(x), χB(x))

A ∩ B = {x | x ∈ A and x ∈ B} χA∩B(x) = min(χA(x), χB(x))

Ā = {x ∈ U | x 6∈ A} χĀ(x) = 1− χA(x)
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Operations between fuzzy sets

The law χA∪B(x) = max(χA(x), χB(x)) gives us an obvious way to
generalise union to fuzzy sets.
Let F and S be fuzzy subsets of U given by membership functions µF and
µS :
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Operations between fuzzy sets: Union

µF∪S(x) = max(µF (x), µS(x))
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Operations between fuzzy sets: Intersection
Analogously,

µF∩S(x) = min(µF (x), µS(x))
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Operations between fuzzy sets: complement

Finally, the complement:

µF̄ (x) = 1− µF (x).
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Fuzzy Logic semantics for connectives

We will consider the semantics for ∧, ∨, → and ¬.

Truth values are now in a subset of the real interval [0,1]

Connectives have functional semantics, e.g. a binary connective ◦
must be interpreted in a function f◦ : [0, 1]2 → [0, 1].

Truth values are ordered: if x > y then x is a stronger truth than y
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Conjunction - Triangular-norm (T-norm)

Conjunction in fuzzy logic

The conjunction connective in fuzzy logic is formalized by a binary
operation on truth values, called t-norm, which satisfy a minimal set of
properties to capture the intuitive meaning of conjunction.

Definition (t-norm)

A t-norm is a binary operation ⊗ : [0, 1]2 → [0, 1] satisfying the following
conditions:

Commutative x ⊗ y = y ⊗ x

Associative x ⊗ (y ⊗ z) = (x ⊗ y)⊗ z

Non-decreasing x ≤ y → z ⊗ x ≤ z ⊗ y

Zero and One 0⊗ x = 0 and 1⊗ x = x

A t-norm ⊗ is continuous if the function ⊗ : [0, 1]2 → [0, 1] is a
continuous function in the usual sense.
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T-norm

Example (t-norms)

 Lukasiewicz t-norm
x ⊗ y = max(0, x + y − 1)

Gödel t-norm
x ⊗ y = min(x , y)

Product t-norm
x ⊗ y = x · y
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Disjunction - T-co-norm

Disjunction in fuzzy logic

Given a t-norm µ, its corresponding t-conorm is defined as

x ⊕ y = 1− (1− x)⊗ (1− y)

t-conorms are used to provide the semantics of ∨, due to their duality
w.r.t. t-norms, and the following properties

Commutative x ⊕ y = y ⊕ x

Associative x ⊕ (y ⊕ z) = (x ⊕ y)⊕ z

Non-decreasing x ≤ y → z ⊕ x ≤ z ⊕ y

Zero and One 0⊕ x = x and 1⊕ x = 1
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T-conorms

Example (t-conorms)

 Lukasiewicz t-conorm
x ⊕ y = min(x + y , 1)

Gödel t-conorm
x ⊕ y = max(x , y)

Product t-conorm
x ⊕ y = x · y
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Implication - Residual

Implication in fuzzy logic

Intuitively, the more φ→ ψ is true, the less additional information is
carried by ψ w.r.t. φ.

If x and y are the truth values of φ and ψ, let x ⇒ y be the truth
value of φ→ ψ. Then the following property should hold for all
z ∈ [0, 1]

(x ⊗ z) ≤ y iff z ≤ (x ⇒ y)

The semantics of implication can therefore be defined as the
maximum truth value to be “added” to x in order to obtain y .

Definition (Residual of a t-norm)

The residual of a t-norm ⊗, is a function ⇒: [0, 1]2 → [0, 1]:

x ⇒ y = max({z | (x ⊗ z) ≤ y})
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Implication - Residual

Example

Residual: If x ≤ y , then (x ⇒ y) = 1; if x > y then there are many
possible definitions of x ⇒ y :

 Lukasiewicz residual: (x ⇒ y) = 1− x + y

Gödel residual: (x ⇒ y) = y

Product residual: (x ⇒ y) = y/x (notice that x > 0)

Properties of Residual

1 If x ≤ y then (x ⇒ y) = 1

2 (1⇒ x) = x

3 (x ⇒ 1) = 1

4 If x ≤ y then x = y⊗ (y ⇒ x)
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Negation - Pre-complement

Negation as implication of false

In classical propositional logic ¬φ can be defined as φ→ ⊥. We can
proceed similarly in Fuzzy logic

Definition (Precomplement)

For every residual operator ⇒ (and therefore for every t-norm), the
pre-complement operator denoted by (−), is defined as:

(−)x = (x ⇒ 0)
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Negation - Precomplement

Example (Precomplement)

 Lukasiewicz precomplement: (−x) = 1− x

Gödel precomplement: (−x) =

{
1 if x = 0
0 Otherwise

Product precomplement: (−x) =

{
1 if x = 0
0 Otherwise
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Logic Tensor Networks

Logic Tensor Networks

Logic Tensor Networks (LTN) [8] is a framework where the elements of a
first order signature are grounded onto a distributed representation,
vectors and tensors, for learning with neural networks. The logic can be
seen as a constraint on the network

LTNs are inspired by:

Bridging logic and kernel machines by M. Diligenti, M. Gori, M.
Maggini, and L. Rigutini (Uni Siena - Italy) [3]

Reasoning With Neural Tensor Networks by R. Socher, D. Chen, C.D.
Manning, and A. Y. Ng. [9]

Neuro-Symbolic Learning Systems by A. d’Avila Garcez et al.
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Logic Tensor Networks

Logic tensor network source

https://github.com/logictensornetworks/logictensornetworks/

git clone
https://github.com/logictensornetworks/logictensornetworks.git

Tutorial Python Notebook

https://github.com/logictensornetworks/tutorials/

git clone https://github.com/logictensornetworks/tutorials.git
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The language of LTN

The agent uses First Order Logic (FOL) to represent its knowledge

FOL signature: constant, function, predicate symbols

Logical symbols: ∧,∨,¬,→, ∀, ∃
Logical symbols are interpreted (grounded) in fuzzy semantics

What about non-logical symbols? In formal logic they are interpreted
in abstract algebraic structures, that represent the states-of-affairs of
the real world

In LTN non-logical symbols are interpreted as real numbers (i.e, the
output of the agent’s sensors in the world)
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FOL Signature

Definition (FOL signature and language)

A FOL signature contains:

a set of constant symbols c1, c2, . . . ,

a set of function symbols f1, f2, . . . , (each fi has an arity, i.e., the
number of arguments it takes)

a set of relation/predicate symbols P1,P2, . . . , (each Pi has an arity,
i.e., the number of arguments it takes)

Example (FOL signature)

CristianoRonaldo, Sergio Ramos, Barca, Juventus, 1, 2, . . . are
constants and denote objects of the domain

number( ) is a unary function symbol

FootballPlayer( ),Male( ) are unary predicates (class)

PlaysFor( , ) is a binary predicate (relation)
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FOL Formulas

FOL terms and formulas are inductively defined as usual

Example (Formulas)

FootballPlayer(CristianoRonaldo)

CristianoRonaldo = CR7

numberOf (CR7) = 7

PlaysFor(CR7,Barca) ∨ PlaysFor(CR7, Juventus)

∀x∀y : PlaysFor(x , y)→ FootballPlayer(x) ∧ FootballTeam(y)

∀x∃y : FootballPlayer(x)→ PlaysFor(x , y) ∧ FootballTeam(y)

∀y(∀x : PlaysFor(y , x)→ Male(x)) ∨ (∀x : PlaysFor(y , x)→ Female(x))
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Symbol Grounding (SG)
SG was originally introduced by Searle [7] and Newell [6],

SG is a key concept that has beed largely discussed by the AI
community [4, 5, 1, 2].

Definition

SG is the process of formation and manipulation of correspondences
between symbolic tokens used by an agent, and perceptions and actions in
the agent’s physical environment.

Cold
ground

Hot
ground

Hot Cold
is not

Hot Cold
is not

Warm

in between

Warm
ground
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Symbol grounding in Learning Agents

Suppose that an agent uses a language based on a set of symbols (its
signature) to represent its knowledge about the world:

Suppose also that a this agent perceives the world via a set of sensors

Assume that a sensor measures the current state of the world and
returns a real number

Then, if an agent has k sensors then it perceives the current state of
the worlds as a vector in Rk

Suppose also that symbols are used to express knowledge about the
current state of the world (i.e. no dynamics)

Then, agent signature should be grounded in some structure in Rk .
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Grounding FOL Signature in the Real Field

Definition (Grounding of FOL signature)

A grounding G of a first order language L in a k-ary real vector space is a
function ·G :

cG ∈ Rk : each constant is mapped to a point in Rk

f G ∈ Rk·n → Rk ; each n-ary function symbol is mapped to an n-ary
real function

PG : Rk∗n → [0, 1]: each n-ary relational symbol is mapped to a fuzzy
subset of Rk·n
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Grounding FOL in R2

cG = 〈2.1, 3〉
dG = 〈3.4, 1.5〉
f G : ~x , ~y 7→ ~x − ~y
PG : ~x 7→ exp

(
(−||~x − ~µ||2)

)
,

with µ = (2, 3)

x axis

y axis

0 1 2 3 4

1

2

3

4

•
c = 〈2.1, 3〉

•
d = 〈3.4, 1.5〉•

f (c, d) = 〈−1.6, 1.5〉
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LTN coding

cG = 〈2.1, 3〉

dG = 〈3.4, 1.5〉
f G : ~x , ~y 7→ ~x − ~y
PG : ~x 7→ exp

(
(−||~x − ~µ||2)

)
, with µ = (2, 3)

Example (LTN code)

ltnw.constant("c",[2.1,3])

ltnw.constant("d",[3.4,1.5])

ltnw.function("f",4,2,fun definition=lambda x,y:x-y)

mu = tf.constant([2.,3.])

ltnw.predicate("P",2,pred definition=lambda x:

tf.exp(-tf.reduce sum(tf.square(x-mu))))
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Grounding FOL formulas

Definition (Grounding of formulas)

The grounding of formulas is recursively defined according to their
structure, and the fuzzy semantics of connectives.

P(t1, . . . , tn)G = PG(tG1 , . . . , t
G
n )

(¬φ)G = 1− φG

(φ ∧ ψ)G = max(φG + ψG − 1, 0)

(φ ∨ ψ)G = min(φG + ψG , 1)

(φ→ ψ)G = min(1− φG + ψG , 1)
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f (c, d) = 〈−1.6, 1.5〉
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Grounding FOL quantifier ∀

In theory

Often in fuzzy logic, the semantics of ∀xφ(x) is given in terms of min
aggregation

(∀xφ(x))G = min
x∈Rk

φG(x)

However, this involves an uncountably infinite number of instances x and
therefore is computationally intractable

In practice

We consider a domain sample, i.e. a finite subset {x1, . . . , xn} of Rk and
define

(∀xφ(x))G =
n

min
i=1

φG(xi )
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Grounding FOL quantifiers ∀,∃

ForAll quantifier ∀
We consider a domain sample, i.e., a finite subset {x1, . . . , xn} of Rk and
define

(∀xφ(x))G =
n

min
i=1

φG(xi )

Existential quantifier ∃
We consider a domain sample, i.e., a finite subset {x1, . . . , xn} of Rk and
define

(∃xφ(x))G =
n

max
i=1

φG(xi )
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LTN Variables

in LTN to write the formula ∀xP(x) you have to declare x to be an
LTN variable

LTN variables are associated to a finite domain sample, which is the
set of all values that can be taken by that variable according to a
data set

Example (LTN variables)

x is an LTN variable associated to the domain samples
x(1), . . . , x(n) ∈ Rk

y is an LTN variable associated to the domain samples
y(1), . . . , y(m) ∈ Rk

(∀x ,P(x))G = minn
i=1(P(x(i)))G

(∀y ,P(y))G = minm
i=1(P(y(i)))G

notice that in general ∀xP(x) is not equivalent to ∀yP(x); it depends
on the domain samples associated to x and y
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Logic Tensor Networks - representation

a constant c

a ground term
f(c)

where f : R4 → R2;

a variable x

x(1)

x(2)

x(3)

a term
f (x)

f (x(1))

f (x(2))

f (x(3))
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Logic Tensor Networks - representation

a ground atom P(c)

an open atom P(x)

P(x(1))

P(x(2))

P(x(3))

an open atom R(x, y)

R(x(2), y(3))
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Logic Tensor Networks - representation
Example: A formula with three free variables P(x , y) ∧ P(z) is represented
with a 3D tensor T

Ti ,j ,k =
(
φ
(

x(i), y(j), z(k)
))G

y(1)

z(1)

x(1)

y(2)

z(2)

x(2)

y(3)

z(3)

x(3)

y(4)

z(4)

x(4)

φ(x(2), y(3), z(1))G
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Example

The domain is the square [0, 4]× [0, 4];

We have a set of examples of the class A

And a set of examples the the class B

We know that A and B are disjoint

and let the shape of the membership
function of the classes be

σ(w1 · x + w2 · y + w3)

with σ(x) the sigmoid function 1
1+e−x

We have to find the parameters
wA

1 ,w
A
2 ,w

A
3 and wB

1 ,w
B
2 ,w

B
3 that

maximize the satisfiability of the formulas:

A(x) ∧ B(y) ∧ ∀x : A(x)→ ¬B(x)

x axis

y axis

0 1 2 3 4

1

2

3

4

• •

••
•

•
•
•

••

••

•

•

•

••

•

•
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Logic Tensor Networks - Architecture

LTN Wrapper

LTN

TensorFlow

"forall x:P(x,y) | A(x)"

Forall(x,Or(P(x,y),A(x)))

tf.reduce min(tf.max(P(x,y),A(x)),axis=0))
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LTN = Combining Neural Nets with Fuzzy Logic

number(x)
player(x)
referee(x)
ball(x)
leg(x)
yellowCard(x)
. . .

partOf(x,y)
leftOf(x,y)
kicks(x,y)
hold(x,y)
. . .

∀x , y
Number(x) ∧
PartOf (x , y) →

Player(x)

∀x , y
YellowCard(x) ∧
Holds(x , y) →

Referee(x)
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Logic Tensor Network – at a glance

f1(x) f1(y) f2(x) f2(y) g1(x , y) g2(x , y)

Networks that compute the
truth value of the formula
φ(x , y) on the basis of the nu-
meric features of x , y and the
pair 〈x , y〉

φ(x , y) (e.g .,P(x)→ ∃yR(x , y))

Deep Neural networks that
compute the values of all the
atomic formulas (e.g. P(x),
R(x,y)) in φ(x , y) starting from
the numeric features

Network for the
fuzzy logic con-
straints
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Logic Tensor Network – at a glance

G(P(v, u)) G(A(u))

v = 〈v1, . . . , vn〉 u = 〈u1, . . . , un〉

W 1
P W 2

P V 1
P V 2

P B1
P B2

P

+ +

th th

uP

σ

W 1
A W 2

A V 1
A V 2

A B1
A B2

A

+ +

th th

uA

σ

residual

G(P(v, u)→ A(u)
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Parameter learning = best satisfiability

Given a FOL theory T , the best satisfiability problem is the problem of
finding the set of parameters Θ of an LTN with G∗ = LTN(T ,Θ∗).
Formally:

Θ∗ = argmax
Θ

(
min
φ∈T

LTN(T | Θ)(φ)

)
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