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Neural Computing

The term "neural network" refers to a family 
of algorithms inspired by models of the brain. 

Such models are employed in statistics, 
cognitive psychology and artificial intelligence.  

Some models seek to emulate the central 
nervous system: computational neuroscience.

Others (deep networks) have become very 
popular recently in large-scale data analysis: 
Data science
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Deep networks

Google brain simulator identifies cats on YouTube:
http://www.wired.co.uk/news/archive/2012-06/26/google-brain-recognises-cats

Facebook is working on deep learning neural networks to 
learn even more about your personal life
http://www.extremetech.com/computing/167179-facebook-is-working-on-deep-
learning-neural-networks-to-learn-even-more-about-your-personal-life

Brain-mind dichotomy in AI: numerical models of the 
brain or logical systems that manipulate symbols? 

See also:
http://en.wikipedia.org/wiki/Dualism_%28philosophy_of_mind%29

http://plato.stanford.edu/entries/computational-mind/
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Deep thinking

IBM Watson wins Jeopardy:

http://www.nytimes.com/2011/02/17/science/17jeopar
dy-watson.html?pagewanted=all&_r=0

IBM research Cognitive Computing:

http://www.research.ibm.com/cognitive-
computing/#fbid=KPlwM2TVtVR

DARPA’s Mind’s eye programme:

http://www.wired.com/2011/01/beyond-surveillance-
darpa-wants-a-thinking-camera/
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Resources / further reading

Behavioral and Brain Sciences (BBS), Cambridge 
University Press

Neural Information Processing Systems (NIPS), MIT Press

IEEE/INNS International Joint Conference on Neural 
Networks IJCNN

IEEE Transactions on Neural Networks and Learning 
Systems

Neural Computation, MIT Press

International Conference on Learning Representations 
ICLR

Matlab primer:
www.math.toronto.edu/mpugh/primer.pdf
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Assessment

30% coursework (in groups of two): data 
analysis comparing two NECO methods on a 
data set of your choice, e.g. from Harvard 
medical school (reducing harm in gambling):
http://www.thetransparencyproject.org/Availabledataset.htm

See also:

http://www.thetransparencyproject.org/codebooks/Codebook_forHi
ghRisk1.pdf

or UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/
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Assessment (cont.)

Submission deadline: Wed 1 April, 5pm

Submission: (Matlab) code + (5 page) 
report through Moodle

More about the coursework, including 
marking scheme, next week…

70% exam (April/May)
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Systems that act rationallySystems that act like humans

Systems that think rationallySystems that think like humans

Cognitive (neuro)Science 

GOFAI: expert systems Neural Nets

Logic

Multi-agent Systems

Artificial Intelligence
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What is a Neural Network?

A massively parallel distributed processor made 
up of simple processing units, which has a natural 
propensity for storing experiential knowledge and 
making it available for use. It resembles the brain 
in two respects:

Knowledge is acquired from the environment through a 
learning process

Inter-neuron connection strength, known as synaptic 
weights, are used to store the acquired knowledge.
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Human Brain

Robust, Fault Tolerant, Massively Parallel, 
Capable of Learning from Examples…
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Artificial Neural Networks

The most interesting properties of neural networks 

do not arise from the functionality of each neuron, 

but from the effect of the interconnection of neurons.
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Feed-forward Networks

Input Vector

Output Vector

Input Layer

Hidden Layer

Output Layer

The network computes a function  : r s
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Learning from Examples in 
Neural Networks

The network computes a function

 : r s

A set of examples (input vectors and their respective 

target output vectors) defines a new function 

g : r s

We want to change the function f computed by the 

network - by changing its weights (Wij) - according 

to the set of examples, in order to approximate g.
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Applications

Pattern Recognition (e.g.: face/image recognition)

Classification (e.g.: fault diagnosis, DNA analysis)

Associative Memory (e.g.: image compression) 

Clustering (e.g.: credit analysis, fraud prevention)

with applications in Aerospace, Finance, Medical,  
Security, Transport, etc.
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Example: DARPA Challenge

http://en.wikipedia.org/wiki/DARPA_Grand_Challenge 

Back in 1995… No hands across America:

Car trip from east coast to west coast

2849 miles of which 2797 miles (98.2%) were driven with no 
hands by the RALPH computer program (the human driver
handled the throttle and brake)

RALPH (Rapidly Adapting Lateral Position Handler) uses video 
images and a multi-layer perceptron with backpropagation as 
learning algorithm to keep the vehicle on the road

http://cart.frc.ri.cmu.edu/users/hpm/project.archive/reference.file/ralph.html
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History of Neural Nets

1940s

– McCulloch and Pitts neuron (biological motivation)

1950s

– Hebbian learning (first learning algorithm by 
Donald Hebb)

– Frank Rosenblatt’s Perceptron (neural net for 
pattern recognition)

1960s 

– Widrow-Hoff learning rule (similar to perceptron’s) 
First application: used in signal processing, e.g. 
echo cancellation in phone lines
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History of Neural Nets (cont.)

1969

– Minsky and Papert’s critique of perceptron (shows 
perceptron’s linear separability problem, and 
practically halts all NN research for twenty years)

1987

– Backpropagation algorithm (overcomes the 
limitations of perceptron)

1990s

– Powerful computers

– Statistical foundations of neural nets established
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Neural Networks today

2000s

– A standard tool to solve many practical problems

– Logical foundations of neural nets established

– Biological motivation stronger than ever (fMRI)

– New insights into Consciousness

2010s

– Deep networks: fast algorithms to train large nets

– IBM Watson wins Jeopardy

– Big Data revolution; Google’s cat recogniser

– Social computing / human computation (see 
HCOMP conference series)

– Human Brain Project
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Classification of Neural 
Networks w.r.t. Learning

Supervised Learning

Unsupervised (Semi-supervised) Learning 

Reinforcement Learning

Environment

Teacher

Critic

Learning

System
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The Neuron
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Model of a Neuron

Ii(t): Input Vector

Wij: Weight Vector; i : Bias

Ui(t): Input Potential;  Ui(t) = gi(Ii(t),Wij,i)

Ai(t): Activation State;  Ai(t+t) = hi(Ai(t), Ui(t))

Oi(t): Output;  Oi(t) = fi(Ai(t))

Wi1

Wi2

Win

Ui(t) Ai(t+t) Oi(t+t)

Ai(t)I1(t)

I2(t)

In(t) i

1
…
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Types of Activation Function h(x)

Linear, Non-Linear (step function),

Semi-Linear (sigmoid function), etc.

Ui(t)Ui(t)

Ai(t)

Linear

Ai(t)

Nonlinear

Ai(t)

Semi-linear

Ui(t)
i i
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McCulloch-Pitts Neuron

Ui = j (Wij . ij) + i

oi = h(Ui), where h(x) = 1 if x > 0 and 0 otherwise.

Wi1

Wi2

Win

 h oi

i1

i2

in i

1

ith neuron

…



© Artur Garcez

The Perceptron

Uses McCulloch-Pitts Neurons

Contains n input neurons, no hidden 
neuron, and 1 output neuron

i1 i2

o = h(W1i1 + W2i2+ ) 

W1 W2



h(x)

x
- 

1

Bias = - Threshold

Note: Input neurons have identity as activation function!
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The Perceptron (Cont.)

Distinguishes Two Classes of Data (in  
n-dimensional space, by applying a n-
dimensional hyper-plane)

i1

i2

i1 i2

o = h(W1i1 + W2i2+ ) 

W1 W2
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Example: Logical OR

i1 i2

o = h(W1i1 + W2i2+ ) 

W1=1 W2 =1

 = - 0.5 i1

i2

h(x)

x
- 

1
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Learning Algorithm (Perceptron)

1. Initialise the weights randomly;

2. For each example (i,t) do:

W =  (t - o(i)) i

Until t = o(i) for all examples.

i = input vector

o = network’s output

t = target output (t  {0,1})

  + is called the Learning Rate

Note: The algorithm can be proven to terminate 
whenever the set of examples is linearly separable.
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Learning (i1 OR i2)
Complete the table below 
4 training epochs are sufficient

i = (1, i1, i2)

W = (, W1, W2)

W i t o  W

(-2,-2,0)

(-2,-2,0)

(-1,-2,1)

(0,-1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

0

0

0

0

(0,0,0)

(1,0,1)

(1,1,0)

?

(1,0,2)

(0,0,2)

(0,0,2)

(1,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

?

(1,1,2)

(0,1,2)

(0,1,2)

(0,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

?

(0,1,2)

(0,1,2)

(0,1,2)

(0,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

?  = 1
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Perceptron’s Linear Separability

i1

i2

i1

i2

XOR



© Artur Garcez

Perceptron’s Linear Separability

i1

i2

Requires more Inputs, more Hidden Neurons, 
or the use of a Curve!
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There are two AI paradigms: symbolic and connectionist. 
Symbolic AI tries to model the (processes of the) mind by 
manipulating symbols. Connectionist AI tries to model 
(properties of) the brain using artificial neural networks. 
Hybrid Systems combine and relate the two.

Input neurons normally use h(x) = x as activation function, 
i.e. they simply propagate the input.

W indicates the variation applied to the weight vector W
such that New_W = Old_W + W.

The art of defining the learning rate: normally  < 1.0;      
 = 0.001 (slow and safer),  = 0.9 (fast and risky). 

Notes
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Many different types of neural 
networks exist!

• Multilayer Feedforward Nets (classification)

• Hopfield Networks (associative memory)

• Radial Basis Function Nets (density estimation)

• Support Vector Machines (pattern recognition)

• Self Organising Maps (clustering)

• Deep Belief Networks (image/audio processing)

• Deep Boltzmann Machines (distribution estimation)

• etc, etc.

Different networks are necessary for different problems!
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Multilayer Perceptron

Input Vector

Output Vector

Input layer

Hidden layers

Output layer
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Multilayer Perceptrons are
Universal Approximators

Neural Networks with as few as a single hidden 
layer with sigmoid activation function can 
approximate virtually any function of interest.

Theorem [Cybenko, 1989]: Let h: be a continuous and sigmoid 
function, i.e. lim x- h(x) = 0 and lim x h(x) = 1. Then, finite sums 
of the form:

g(x) = j j h(Wj x + j), x  In

with parameters j, j   and Wj  n, are such that g(x) - f(x) < 
for any continuous function f(x).
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Learning in 
Multilayer Perceptrons

We need to find j, j and Wj such that 
g(x) approximates f(x)

x
420-2-4

1

0.8

0.6

0.4

0.2

0

x
420-2-4

4

2

0

-2

-4

x
420-2-4

4

2

0

-2

-4

g(x) = j j h(Wj x + j)
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Semi-Linear Activation Function

h(x) = 1 / ( 1 + e
-x 

)

h’(x) = e
-x 

/ ( 1 + e
-x 

)
2

x
420-2-4

1

0.8

0.6

0.4

0.2

0x
420-2-4

1

0.8

0.6

0.4

0.2

0x
420-2-4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 = 1/2  = 1  = 2
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Backpropagation

A computationally efficient method for 
training multilayer perceptrons.

The neural learning algorithm most 
successfully applied in industry.

It computes an estimate of the gradient of an 
error function (EW) w.r.t. a set of weights W

EW =  EW   ,   EW  , … , EW

W11 W12            Wij
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Gradient Descent

The gradient of EW is the vector pointing in the direction 
of the fastest growth of EW, perpendicular to contour lines.

x
 x f

The iterative application of changes 

W = - . EW

to W tries to minimise 

EW = ½ i (oi - ti)
2

EW
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Backpropagation 
Learning Algorithm
1. Propagate

2. Compute Error

3. Back-propagate Error and 

Change Weights

Input Vector

Output Vector

1 3

Target Vector

2
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Propagate

i1 i2 i3

o1

a b

Ub = i (ii .Wb, ii
) + θb

h(Ub)

h'(Ub) = e-Ub / ( 1 + e-Ub )
2

h(Ub) = 1/1+e-Ub

Wb, i1

Wb, i2

Wb, i3
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Compute Error

i1 i2 i3

o1 e1 = Obtained output (o1) - Target output (t1)

Note:

• A Training Example is a pair 

(input vector, target output)

• e1 is the (local) error of output o1. 

• EW = ½ i (oi - ti)
2 is the network’s global 

error (which we want to minimise)
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Backpropagate Error and 
Change Weights

i1 i2 i3

o1

a b

b = W1 . o1 . h'(Ub)

W1 . o1

W1

W1 = -  . o1 . h(Ub)

o1 = (o1- t1) . h'(Uo1)

W2 = -  . b . i3

W2

θb = -  . b



© Artur Garcez

i1 i2 i3

ok

Wji1

k

j

Wji2
Wji3

Wkj

Uj h’(Uj)

oj

h’(Uk)Uk

ekUj = i (Wj,ii 
. ii) + j

oj = h(Uj), where h(x) = 1/(1+e-x)
h'(Uj) = e-Uj / ( 1 + e-Uj )

2

Uk = j (Wkj . oj) + k

ok = h(Uk)

h'(Uk) = e-Uk / ( 1 + e-Uk )
2

ek = ok – tk

ok = ek . h’(Uk)

ej = Wkj . ok 

j = ej . h’(Uj)

Wkj = -  . ok . oj

Wjii
= -  . j . Ii

and don’t forget the biases…

ok

ej

j
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Backprop. computes 
EW = EW /W efficiently

i

j

Note:

EW = ½ i (oi - ti)
2 ei = oi – ti

oi = h(Ui)                 Ui = j (Wij . oj)

oi = ei . h’(Ui) W = -  . oi . h(Uj)
(oi is the local gradient)

Wij

EW

ei

EW
=

oi

ei

Ui

oi

Wij

Ui

ei 1 h’(Ui)
oj = h(Uj)

oi

oj
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Backprop. computes 
EW = EW /W efficiently

i

j

oi

oj

When i is an output neuron W = -  . ei . h’(Ui) . oj

What if i is a hidden neuron (hi)? 
What if there are many hidden layers? Vanishing gradients

Wij

EW

oi

EW
=

ek . h’k(Uk) . Wki

Ui

oi

Wij

Ui

h’(Ui)
oj

W = -  . hi . oj

hi = h’(Ui) k (Wki.ok) (hi, oj are local gradients)
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Backpropagation Algorithm

For each example (i = i1,…,ip; t = t1,…,tq) in the training set, do:

For each neuron n in the network in ascending topological order, do:

Compute on = h(U(i)) and dn = h'(U(i))

For each neuron n in the network in descending topological order, do:

If n is an output neuron ok then: 

ok = ek . dk, where ek = ok - tk

Wki = -  . ok . oi

If n is a hidden neuron hi then:

hi = di . k (Wki ok)

Wij = -  . hi . oj

Notes: Each pass through the training set is called an epoch. 

Typically, Backprop. takes several epochs to converge.

The algorithm can be extended easily to networks having more than a 

single hidden layer. Try it!
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Application: Fault Diagnosis

Transformer 01
13,8Kv/230Kv

Generator
01

Breaker
Transformer 01

Breaker
Transformer 02

Breaker
By-pass

Main Bus Auxiliary Bus

Transformer 02
13,8Kv/230Kv

Breaker
Transmission Line 01

Generator
02

Transmission
Line 01

Breaker
Transmission Line 02

Transmission
Line 02

1     2    3    4    5     6     7    8    9   10   11  12  13  14  15   16  17   18  19   20  21  22   23  24   25  26   27  28  29  30   31  32

  1     2     3    4     5     6     7     8    9    10   11   12  13   14   15   16   17   18   19   20  21   22   23

Alarms  Faults
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Application: DNA analysis

Minus35 Minus10 Conform. Contact Promoter

-50 DNA +7 Minus35 Minus10 Conform. Contact

Promoter = small DNA sequence at beginning of genes
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Lab-based Tutorial

Pole Balancing 

F



Backpropagation Learning Algorithm

Generalisation x Overfitting



© Artur Garcez

Lab-based Tutorial (cont.)

We want to estimate F given:
angle  and angular velocity ’

…

F

 ’We need a training set and a test set… 
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Limitations of Backpropagation

Backprop. is about trying to minimise a 
training set error…

Optimisation: The problem of local minima

Lack of biological plausibility…
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The Problem of Local Minima

• Backprop. performs gradient descent on an error surface;

• It tries to find the global minimum of the error function;

• But, depending on the initial state, it may get stuck in a local minimum.

EW

EW = 0

EW = 0
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Changing the Learning Rate

EW

larger 
e.g.,  = 0.3

smaller 
e.g.,  = 0.1
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Adding Momentum

M1

M2

M1

M2

Wt = -  . EW +  Wt –1, where 0    1

Term of Momentum

 = 0.0,  small  = 0.95,  small
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Global Minimisation

M1

M2

M1

M2

Momentum does not guarantee global minimisation of EW

Note: EW is a function in n-dimensional space, where n is 
the number of input neurons
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Generalisation

We expect g (our approximation of f) to 
produce reasonable results for examples 
not seen during training, i.e. we expect 
the learning algorithm to generalise to 
unseen cases. 

The most likely hypothesis (g) is the 
simplest one that is consistent with all 
observations (Ockham’s razor). 
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Generalisation

training examples

new (unseen) case

i1

i2

t1

We try to minimise a training set error

We would like to minimise a generalisation error
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Estimating Generalisation Error

Partition the set of examples into a 
training set and a test set.

The test set is never seen by the 
network during training.

The test set error is an estimate of the 
generalisation error.
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n-fold Cross-Validation

Divide the set of examples E into n 
subsets E1, E2, … , En

For each Ei (1  i  n), train a network 
with E – Ei and test it with Ei

Calculate the averaged test set error

.  .  .

Note: Leaving m out = (|E| / m)-fold cross validation.
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Model selection

Note: n-fold cross-validation on m different neural models (with different 
numbers of hidden neurons) can also be used to select the best model.

Network 1 Network n

…

i1 i2  i3  i4

W = 1

1/n 1/n
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Bootstrapping

Create k (pseudo) sets of examples    
E1, E2, … , Ek by randomly selecting |E| 
elements (with replacement) from E

For each Ei (1  i  k), train a network 
with E – Ei and test it with Ei

Calculate the averaged test set error
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Noisy Data

i

t

Note: If the set of training examples contains noise,
the training set error must not be zero!
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Overfitting

Note: Typically caused by too many hidden neurons or 
not enough training examples, overfitting results in good
training set performance and poor test set performance.

i

t desired

obtained
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Generalisation

Assume Ockham’s razor

Assume set of examples is representative

Check Training set performance x Test set performance

EW

Epochs
100 200 300 400 500

2.0

1.0

Training set error

Test set error

Overfitting
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Testing the Network is Key!

i

t
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Learning and Generalisation

Backprop. is about trying to minimise a training set error…

Problem of local minima: add momentum, vary learning rate

…but learning is about trying to minimise a generalisation 
error 

Estimate using test set error, cross-validation, bootstrapping

(Note: generalisation error approaches training set error 
when the number of training examples grows)

In addition, in the presence of noisy training examples or 
to check for overfitting, testing the network is key! 


