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Introduction
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Relational Learning

@ Learning a first-order logic theory from examples (in the
presence of uncertainty)

e By searching for candidate hypotheses at first-order level or
through propositionalization

o Relevant for the analysis of complex networks: drug design
in bioinformatics, link analysis in social networks, etc.

o Related work: (probabilistic) ILP, deep networks, MLNSs,
BLOG, StarAl (lifted inference), etc.

@ Hypothesis search (sound and sometimes complete at
inducing theories) can be costly (but see streaming ILP
(ILP’2013), online relational learning (ECML12) and more
recent developments (including differentiable (d)ILP, JAIR
2018).
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Relational Learning in Neural-Symbolic Systems

@ A number of attempts at first-order (and higher-order) logic
learning in neural nets: semantic approach (Hitzler et al),
fibring, topos (Osnabruck), association (SHRUTI),
unification, etc.

@ Propositionalization offers a trade-off between information
loss and efficiency; it seems a natural choice for use with
neural nets.

@ CILP++ is a neural-symbolic system that can solve ILP
problems efficiently (through propositionalization) using a
neural network trained with backpropagation (Franca,
Zaverucha and d’Avila Garcez, Mach. Learn., July 2013)
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Efficient Relational Learning using CILP++

@ CILP++ is composed of:

e Bottom Clause Propositionalization (BCP): creates a
bottom clause for each positive and negative ILP example

o Artificial Neural Networks (ANNSs) trained with
backpropagation: generalising from a set of bottom clauses
given as binary vectors (c.f. Muggleton and
Tamaddoni-Nezhad, QG-GA, Mach. Learn. 2008)

e Presenting the trained knowledge in relational form:
mapping trained features into first-oder logic
representations (ICCSW 2013, Dagstuhl OASiIcs, 2013)
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Summary of Results on Relational Learning

@ CILP++ vs. ILP system Aleph
o CILP++ achieved comparable accuracy while being
consistently faster
e Standard backprop vs. early stopping: trade-off between
accuracy and efficiency
° BVCP vs. the propositionalization component of RSD
(Zelezny and Lavrac, 2006)
e BCP achieved overall better accuracy and was faster
e BCP with neural nets is much better than RSD with neural
nets; BCP with C4.5 is comparable to RSD with C4.5
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Summary of Results on Relational Knowledge

Extraction

@ Initial evaluation of FOL rules learned by CILP++
(BCP-rules), extracted from the neural network trained
using BCP propositionalization:

o We compared BCP-rules with rules produced by Aleph (we
used RIPPER (Cohen, 1995) as the rule learner, but other
propositional rule learners can be used)

e As expected, there is information loss in comparison with
Aleph, but in exchange for considerable speed-ups and
smaller (more compact) rule sets

e Although our extraction algorithm shows good fidelity to
network, the lifting of FOL rules from trained neural nets
can improve accuracy!

@ Experiments on FOL knowledge extraction from neural

networks have been limited and are ongoing. Next step:

use macro operators (R. Mooney) with CILP++ ﬁfgﬁmmm
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A simple example: Family Relationship

@ BCP: generates a bottom clause for each (positive or
negative) example; converts each bottom clause into a
binary vector (similarly to QG-GA)

Background Knowledge: Positive Examples:
mother(mom1, daughter1) motherinLaw(mom1, husband1)
wife(daughter1, husbandi) Negative Examples:
wife(daughter2, husband2) motherinLaw(daughter1, husband2)

@ Using Progol’s bottom clause algorithm (Muggleton, 1995):
e |, = [motherinLaw(A, B) < mother(A, C), wife(C, B)]
e | _ = [motherinLaw(A, B) < wife(A, C)]
@ BCP features: mother(A, C), wife(C, B), wife(A, C)
@ Hypothesis: Is the use of a set of bottom clauses useful for
learning and generalization? cdx U VERSITY
ﬁ LONDON
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Neural networks and Backpropagation

@ Popular connectionist models with application in many
areas: pattern recognition, games, vision, speech, control

@ CILP++ uses a multi-layer perceptron (MLP) with three
layers of artificial neurons connected in a feed-forward
manner; one could use a deep network instead, or even a
recurrent network as used by CILP.

@ Error back-propagation is a widely used training algorithm
for MLPs; it seeks to minimize an error function through
gradient descent

@ When using error back-propagation, a common way of
dealing with overfitting is to use early stopping
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Early stopping

@ Early stopping aims to avoid overfitting (Caruana et. al.,
2000) by using a validation set as stopping criteria

@ The main early stopping criteria are:

e Stop when the ratio between the validation error and the
current training epoch error gets higher than a specified «;

e Stop when the sum of the current epoch’s training and
validation errors becomes smaller than a specified s for m
consecutive epochs;

e Stop when the validation error keeps increasing for n
consecutive epochs.

@ There is empirical evidence that the first criterion leads to
fair accuracy and faster convergence (Prechet (1997)),
thus it is used by CILP++
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The CILP Translation Algorithm (revisited)
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Bottom Clause Propositionalization (BCP)

@ BCP uses Progol’'s bottom clause generation to create
features for each ILP example

@ Each positive example is saturated normally and labeled
as positive (1); negative examples are processed just like
positive ones, but are labeled as negative (-1)

@ All unifications made during bottom clause generation are
stored into hash sets

@ A feature table F is created, consisting of all distinct body
literals from all the bottom clauses created

@ Finally, a binary input vector v of size |F| is created for
each example (set of features) (Vi, v(i) € {0,1})

8,
A2 CITY UNIVERSITY
;A\ /. LONDON



BCP (cont.)

Background Knowledge: Positive Examples

mother(mom1, daughter1) motherinLaw(mom1, husband1)
wife(daughter1, husband1) Negative Examples
wife(daughter2, husband2)  motherinLaw(daughteri, husband2)

@ Continuing the family relationship example:
1 = [motherinLaw(A, B) «+— mother(A, C), wife(C, B)]
1_ = [motherinLaw(A, B) « wife(A, C)]

e From L, hash,: e From L _, hash_:
Key Value Key Value

momf1 A daughter1 A

husband1 B husband2 B

daughtert C husband1 C

e F = {mother(A, C), wife(C, B), wife(A, C)}

° vy = 17170 "n?
° vf = 20,0’1% ﬁfgﬁggmm



Connectionist Inductive Logic Programming (CILP++)
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Network training

@ The network is fully-connected with near-zero weight
connections

@ Positive examples are associate with a label y = 1 and
negative examples with y = —1

© The heuristic chosen to calculate the training error E is
standard mean-squared error:

E= Z Wiz y)® y’ , Where y; and j; are the label and network
=1
output respectively

© Both standard stopping criteria and early stopping have
been evaluated
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Stopping criteria

@ Standard stopping criteria:
@ 300 training epochs have elapsed
@ 95% of the training data satisfies E < 0.1
e 90% of the training data is correctly classified by the
network and no improvements can be seen for 5 training
epochs
@ Early stopping:
o A validation set with ‘5 of the total set of examples was
created
e Attime t, the best model from epochs 1 to t is stored

o If after epoch e, the condition (first criterion of Prechet,
1999)

GL(t) > a, GL(t) = 0.1 (%gg - 1) is satisfied, training

stops "
o CITY UNIVERSITY
;A L. LONDON



Connectionist Inductive Logic Programming (CILP++)
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Building the network and training

1) motherinLaw(A,B) :- mother(A,C), wife(C,B) 2) ~motherinLaw(A,B) :- wife(A,C)

Input
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Results (CILP++)
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Description of the Experiments

@ Four CILP++ configurations have been tested:

e st: uses standard backpropagation stopping criteria

e es: uses early stopping

e n%bk: the network is created using n% of the examples in

(E'@in) as BK'

e 2h: when n = 0, the network uses 2 hidden neurons only!
@ Why two hidden neurons in the 2h configurations?

e It can help avoid overfitting in large networks

e Accuracy doesn’t seem to increase substantially with more

than 2 hidden neurons when the input is a binary vector
(Haykin, 2009)
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Experimental Results — Accuracy vs. Runtime

Dataset Aleph CILP++g 5 59 CILP++g 59,1 CILP++g 5y

mutagenesis  80.85x(£10.5)  91.70(+5.84) 90.65(+8.97) 89.20(+8.92)
0:08:15 0:10:34 0:11:15 0:10:16

krk 99.6(+0.51) 98.31%(£1.23) 98.32x(£1.25) 98.42(+1.26)
0:11:03 0:04:38 0:04:34 0:04:40

uw-cse 84.91(+7.32) 66.24%(£7.01)  66.08x%(+2.48)  70.01+(+2.2)
0:45:47 0:08:47 0:10:19 0:08:54

alz-amine 78.71(£5.25) 78.99(+4.46) 76.02%(+3.79)  77.08(+5.17)
1:31:05 1:23:42 2:07:04 1:14:21

alz-acetyl 69.46(+3.6) 63.64%(+£4.01)  63.49%(+4.16)  63.30%(+5.09)
8:06:06 4:20:28 5:49:51 2:47:52

alz-memory  68.57(+5.7) 60.44%(£4.11)  59.19% (£5.91)  59.82x(+6.76)
3:47:55 1:41:36 2:12:14 1:19:27

alz-toxic 80.5(+3.98) 79.92(+3.09) 80.49(43.65) 81.73(+4.68)
6:02:05 3:04:53 3:33:17 2:12:17

bold = best result; * indicates statistically significant difference

@ CILP++ achieves better accuracy and runtime in one st

configuration

CITY UNIVERSITY
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@ CILP++{st,2h} is generally faster than Aleph
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Experimental Results with early stopping

Dataset Aleph

CILP++.52 50bk

CILP++ 5 59k

CILP++, ),

mutagenesis  80.85(+10.51)

83.48(+7.68)

83.01(£10.71)

84.76(-8.34)

0:08:15 0:01:25 0:01:43 0:01:50
krk 99.6(+0.51) 98.16%(+0.83)  96.33%(+4.95) 98.31(+1.23)
0:11:03 0:04:08 0:04:28 0:04:18
uw-cse 84.91(£7.32)  68.16%(+£4.77) 65.69%(£1.81) 67.86%(+1.79)
0:45:47 0:04:08 0:04:16 0:04:08
alz-amine 78.71(+3.51) 65.33%(+9.32)  65.44%(+5.58) 70.26% (+7.1)
1:31:05 0:35:27 0:08:30 0:10:14
alz-acetyl  69.46(+3.6) 64.97+(£5.81)  64.88%(£4.64) 65.47(£2.43)
8:06:06 3:04:47 2:42:31 0:25:43

alz-memory  68.57(£5.7)

5343 (£5.64)

54.84(£6.01)

51,57 (£5.36)

3:47:55 1:40:51 3:57:39 1:33:35
alz-toxic 80.5(+4.83) 67.55%(+£6.36) 67.26%(£7.5)  74.48x(+5.62)
6:02:05 0:12:33 0:14:04 0:28:39

@ Considerable speed-ups are obtained, in exchange for

accuracy at times
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Comparison with another Propositionalization

Dataset Aleph BCP+ANN RSD+ANN BCP+C4.5 RSD+C4.5

muta 80.85% (+10.51)  89.20(+8.92)  67.63x(£16.44) 85.43x(£11.85) 87.77(+1.02)
0:08:15 0:10:16 0:11:11 0:02:01 0:02:29

krk 99.6(+0.51)  98.42x(£1.26) 72.38%(+12.94)  98.84%(+0.77)  96.1%(+0.11)
0:11:03 0:04:40 0:06:21 0:01:59 0:05:54

@ BCP achieves better accuracy than RSD overall, while
being slightly faster

@ Accuracy of BCP with ANNs is much higher than RSD with
ANNs
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Relational Knowledge Extraction

@ Since BCP features (and neurons) are first-order literals, it
should be possible to extend the CILP knowledge
extraction algorithm directly to obtain first-order rules from
trained CILP++ networks

@ ...but such rules will not obey any ILP restrictions as
imposed by a language bias

@ Franga et. al., ICCSW’13, AAAI Spring Symposium 2015,
contain a first proposal towards an efficient relational
knowledge extraction algorithm using the propositional rule
learner RIPPER (other rule learner could be used)
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From CILP++ networks to FOL rules

@ Search for literals whose variables do not obey the
ILP-style variable chaining

@ Using BCP’s hash tables, replace such variables by a
disjunction of ground terms

@ This transformation is provably correct: BCP feature
equivalence theorem
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Example: Family relationship revisited

S| = {motherInLaw(A, B
motherInLaw(A, B
~ motherInLaw(A, B

: — mother(C, B),wife(C,D);
: — mother(A,C),wife(C, B);
:— wife(C,B),parents(C, B, D),dad(E, F)}.

— mother(A,C),wife(C, D), not(dad(E, F))}.

= ==

R, = {motherInLaw(A, B

hash = {D/husband2, D/daughter1, E /husband1,
F/daughter1}

@ From the BCP feature equivalence:
not(dad(E, F)) — not(dad(husband1, daughter1))
wife(C, D) — wife(C, daughteri) v wife(C, husband2)

@ The resulting first-order rule is:

RY = {motherInLaw(A, B) : —mother(A, C), (wife(C, daughterl); wife(C, husband2)),
not(dad(husbandl, daughterl))}.
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First-order filtering

@ We can improve results further by making the theory more
compact

@ A modified version of the theory filtering algorithm T-reduce
(A. Srinivasan, The Aleph System, version 5) is applied

e Original T-reduce: removes sets of rules without positive
coverage or that contribute negatively to training set
accuracy

e Modified T-reduce: also removes literals that are always
true, and literals containing no variables

e If applied on RS:

RYOL = {motherInLaw(A, B) - mother(A, C), (wife(C, daughterl); wife(C, husband2))}
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Experimental settings

@ We have evaluated the approach (named BCP+RIPgp,) in
comparison with:

o Aleph (as a baseline)

e BCP + RIPPER (named BCP+RIP )
@ We use the Alzheimers benchmark for comparison
@ The used metrics for evaluation are:

o Classification accuracy
@ Runtime
e Theory size (i.e. total number of literals)
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Initial Results

Alz-ami Alz-ace Alz-mem Alz-tox

Aleph 78.71(+5.25) 69.46(+4.6) 68.57(£57) 80.5(+4.83)
(baseline) 1:31:05,36.1 8:06:06,47.3 3:47:55,457 6:02:05, 37.9

BCP+RIPyop 73.35(+4.32) 67.8(+3.77) 65.27(+7.11) 78.44(+5.44)
0:19:49,30  0:23:21,20.1 0:25:11,14.4 0:17:41,35.2

BCP+RIPro, 77.73(:4.57) 63.56(+5.06) 57.64(+57) 66.45(:6.93)
0:21:59,30.4 0:26:39,18.7 0:28:45,13.8  0:20:57, 18

Accuracy and theory size averaged over 10-fold cross-validation

@ As expected, Aleph’s accuracy is superior
@ But we produce first-order theories that are more compact

@ And the accuracy of BCP+RIP£g, is even higher than
BCP+RIP in one case \
ﬁ CITY UNIVERSITY
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In Summary

@ CILP++: Competitive accuracy results can be obtained
efficiently using a neural-symbolic approach; in principle,
any ILP dataset can be used with CILP++

@ BCP can be used with any propositional learner (although

some don’t seem to like the idea of bottom clauses very
much)

@ Relational Knowledge Extraction: capable of generating
compact first-order rule sets with negation from trained
neural nets

@ Considerably faster than Aleph, but sometimes with
(sometimes considerable) accuracy loss
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Next Steps

@ Evaluation of noise robustness and evaluation in theory
revision tasks (with negation)

@ Apply to first-order knowledge extraction from neural
networks in general (compare with TREPAN and its
variations)

@ Compare accuracy results with other fast and hybrid ILP
approaches, including differentiable ILP

@ A lot of the magic seems to happen in the choice (and
number of copies) of first-order literals to place in the input
and output layers: use macro-operators!?
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