
INM427 Neural Computing

Artur S. d’Avila Garcez

a.garcez@city.ac.uk

http://www.staff.city.ac.uk/~aag/

Neural Computing

The term "neural network" refers to a family
of algorithms inspired by models of the brain.

Such models are employed in statistics,
cognitive psychology and artificial intelligence.

Some models seek to emulate the central
nervous system: computational neuroscience.

Others (deep networks) have become very
popular recently in large-scale data analysis:
Data science

© Artur Garcez

Deep networks

Google brain simulator identifies cats on YouTube:
http://www.wired.co.uk/news/archive/2012-06/26/google-brain-recognises-cats

Facebook is working on deep learning neural networks to
learn even more about your personal life
http://www.extremetech.com/computing/167179-facebook-is-working-on-deep-
learning-neural-networks-to-learn-even-more-about-your-personal-life

Brain-mind dichotomy in AI: numerical models of the
brain or logical systems that manipulate symbols?

See also:
http://en.wikipedia.org/wiki/Dualism_%28philosophy_of_mind%29

http://plato.stanford.edu/entries/computational-mind/

© Artur Garcez

http://www.wired.co.uk/news/archive/2012-06/26/google-brain-recognises-cats
http://www.extremetech.com/computing/167179-facebook-is-working-on-deep-learning-neural-networks-to-learn-even-more-about-your-personal-life
http://en.wikipedia.org/wiki/Dualism_%28philosophy_of_mind%29
http://plato.stanford.edu/entries/computational-mind/

Deep thinking

IBM Watson wins Jeopardy:

http://www.nytimes.com/2011/02/17/science/17jeopar
dy-watson.html?pagewanted=all&_r=0

IBM research Cognitive Computing:

http://www.research.ibm.com/cognitive-
computing/#fbid=KPlwM2TVtVR

DARPA’s Mind’s eye programme:

http://www.wired.com/2011/01/beyond-surveillance-
darpa-wants-a-thinking-camera/

© Artur Garcez

http://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html?pagewanted=all&_r=0
http://www.research.ibm.com/cognitive-computing/#fbid=KPlwM2TVtVR
http://www.wired.com/2011/01/beyond-surveillance-darpa-wants-a-thinking-camera/

© Artur Garcez

Contents

What is a Neural Network?

History of Artificial Neural Networks

The Perceptron and the Linear Separability
Problem

The Multilayer Perceptron and the
Backpropagation Learning Algorithm

Network Training and Evaluation in practice
(the Problem of Local Minima)

Hebbian Learning, Self-Organising Maps

Contents (cont.)

Hopfield Networks and Boltzmann Machines

Deep Learning

Learning Representations vs. Knowledge
Representation, Transfer Learning

Neuro-symbolic systems, Knowledge
Extraction

Inductive Logic Programming

Neuro-fuzzy systems

© Artur Garcez

© Artur Garcez

References

S. Haykin, Neural Networks: A Comprehensive
Foundation, 2nd Edition, Prentice Hall, 1999.

A. d’Avila Garcez, K. Broda and D. Gabbay,
Neural-Symbolic Learning Systems, Springer-
Verlag, 2002.

P. Murphy, Machine Learning: a Probabilistic
Perspective, MIT Press, 2014.

Resources / further reading

Behavioral and Brain Sciences (BBS), Cambridge
University Press

Neural Information Processing Systems (NIPS), MIT Press

IEEE/INNS International Joint Conference on Neural
Networks IJCNN

IEEE Transactions on Neural Networks and Learning
Systems

Neural Computation, MIT Press

International Conference on Learning Representations
ICLR

Matlab primer:
www.math.toronto.edu/mpugh/primer.pdf

© Artur Garcez

http://www.math.toronto.edu/mpugh/primer.pdf

Assessment

30% coursework (in groups of two): data
analysis comparing two NECO methods on a
data set of your choice, e.g. from Harvard
medical school (reducing harm in gambling):
http://www.thetransparencyproject.org/Availabledataset.htm

See also:

http://www.thetransparencyproject.org/codebooks/Codebook_forHi
ghRisk1.pdf

or UCI Machine Learning repository:
http://archive.ics.uci.edu/ml/

© Artur Garcez

http://www.thetransparencyproject.org/Availabledataset.htm
http://www.thetransparencyproject.org/codebooks/Codebook_forHighRisk1.pdf
http://archive.ics.uci.edu/ml/

Assessment (cont.)

Submission deadline: Wed 1 April, 5pm

Submission: (Matlab) code + (5 page)
report through Moodle

More about the coursework, including
marking scheme, next week…

70% exam (April/May)

© Artur Garcez

© Artur Garcez

Systems that act rationallySystems that act like humans

Systems that think rationallySystems that think like humans

Cognitive (neuro)Science

GOFAI: expert systems Neural Nets

Logic

Multi-agent Systems

Artificial Intelligence

© Artur Garcez

What is a Neural Network?

A massively parallel distributed processor made
up of simple processing units, which has a natural
propensity for storing experiential knowledge and
making it available for use. It resembles the brain
in two respects:

Knowledge is acquired from the environment through a
learning process

Inter-neuron connection strength, known as synaptic
weights, are used to store the acquired knowledge.

© Artur Garcez

Human Brain

Robust, Fault Tolerant, Massively Parallel,
Capable of Learning from Examples…

© Artur Garcez

Artificial Neural Networks

The most interesting properties of neural networks

do not arise from the functionality of each neuron,

but from the effect of the interconnection of neurons.

© Artur Garcez

Feed-forward Networks

Input Vector

Output Vector

Input Layer

Hidden Layer

Output Layer

The network computes a function : r s

© Artur Garcez

Learning from Examples in
Neural Networks

The network computes a function

 : r s

A set of examples (input vectors and their respective

target output vectors) defines a new function

g : r s

We want to change the function f computed by the

network - by changing its weights (Wij) - according

to the set of examples, in order to approximate g.

© Artur Garcez

Applications

Pattern Recognition (e.g.: face/image recognition)

Classification (e.g.: fault diagnosis, DNA analysis)

Associative Memory (e.g.: image compression)

Clustering (e.g.: credit analysis, fraud prevention)

with applications in Aerospace, Finance, Medical,
Security, Transport, etc.

© Artur Garcez

Example: DARPA Challenge

http://en.wikipedia.org/wiki/DARPA_Grand_Challenge

Back in 1995… No hands across America:

Car trip from east coast to west coast

2849 miles of which 2797 miles (98.2%) were driven with no
hands by the RALPH computer program (the human driver
handled the throttle and brake)

RALPH (Rapidly Adapting Lateral Position Handler) uses video
images and a multi-layer perceptron with backpropagation as
learning algorithm to keep the vehicle on the road

http://cart.frc.ri.cmu.edu/users/hpm/project.archive/reference.file/ralph.html

© Artur Garcez

History of Neural Nets

1940s

– McCulloch and Pitts neuron (biological motivation)

1950s

– Hebbian learning (first learning algorithm by
Donald Hebb)

– Frank Rosenblatt’s Perceptron (neural net for
pattern recognition)

1960s

– Widrow-Hoff learning rule (similar to perceptron’s)
First application: used in signal processing, e.g.
echo cancellation in phone lines

© Artur Garcez

History of Neural Nets (cont.)

1969

– Minsky and Papert’s critique of perceptron (shows
perceptron’s linear separability problem, and
practically halts all NN research for twenty years)

1987

– Backpropagation algorithm (overcomes the
limitations of perceptron)

1990s

– Powerful computers

– Statistical foundations of neural nets established

© Artur Garcez

Neural Networks today

2000s

– A standard tool to solve many practical problems

– Logical foundations of neural nets established

– Biological motivation stronger than ever (fMRI)

– New insights into Consciousness

2010s

– Deep networks: fast algorithms to train large nets

– IBM Watson wins Jeopardy

– Big Data revolution; Google’s cat recogniser

– Social computing / human computation (see
HCOMP conference series)

– Human Brain Project

© Artur Garcez

Classification of Neural
Networks w.r.t. Learning

Supervised Learning

Unsupervised (Semi-supervised) Learning

Reinforcement Learning

Environment

Teacher

Critic

Learning

System

© Artur Garcez

The Neuron

© Artur Garcez

Model of a Neuron

Ii(t): Input Vector

Wij: Weight Vector; i : Bias

Ui(t): Input Potential; Ui(t) = gi(Ii(t),Wij,i)

Ai(t): Activation State; Ai(t+t) = hi(Ai(t), Ui(t))

Oi(t): Output; Oi(t) = fi(Ai(t))

Wi1

Wi2

Win

Ui(t) Ai(t+t) Oi(t+t)

Ai(t)I1(t)

I2(t)

In(t) i

1
…

© Artur Garcez

Types of Activation Function h(x)

Linear, Non-Linear (step function),

Semi-Linear (sigmoid function), etc.

Ui(t)Ui(t)

Ai(t)

Linear

Ai(t)

Nonlinear

Ai(t)

Semi-linear

Ui(t)
i i

© Artur Garcez

McCulloch-Pitts Neuron

Ui = j (Wij . ij) + i

oi = h(Ui), where h(x) = 1 if x > 0 and 0 otherwise.

Wi1

Wi2

Win

 h oi

i1

i2

in i

1

ith neuron

…

© Artur Garcez

The Perceptron

Uses McCulloch-Pitts Neurons

Contains n input neurons, no hidden
neuron, and 1 output neuron

i1 i2

o = h(W1i1 + W2i2+)

W1 W2

h(x)

x
-

1

Bias = - Threshold

Note: Input neurons have identity as activation function!

© Artur Garcez

The Perceptron (Cont.)

Distinguishes Two Classes of Data (in
n-dimensional space, by applying a n-
dimensional hyper-plane)

i1

i2

i1 i2

o = h(W1i1 + W2i2+)

W1 W2

© Artur Garcez

Example: Logical OR

i1 i2

o = h(W1i1 + W2i2+)

W1=1 W2 =1

 = - 0.5 i1

i2

h(x)

x
-

1

© Artur Garcez

Learning Algorithm (Perceptron)

1. Initialise the weights randomly;

2. For each example (i,t) do:

W = (t - o(i)) i

Until t = o(i) for all examples.

i = input vector

o = network’s output

t = target output (t {0,1})

 + is called the Learning Rate

Note: The algorithm can be proven to terminate
whenever the set of examples is linearly separable.

© Artur Garcez

Learning (i1 OR i2)
Complete the table below
4 training epochs are sufficient

i = (1, i1, i2)

W = (, W1, W2)

W i t o W

(-2,-2,0)

(-2,-2,0)

(-1,-2,1)

(0,-1,1)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

0

0

0

0

(0,0,0)

(1,0,1)

(1,1,0)

?

(1,0,2)

(0,0,2)

(0,0,2)

(1,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

?

(1,1,2)

(0,1,2)

(0,1,2)

(0,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

?

(0,1,2)

(0,1,2)

(0,1,2)

(0,1,2)

(1,0,0)

(1,0,1)

(1,1,0)

(1,1,1)

0

1

1

1

?

?

?

?

?

?

?

? = 1

© Artur Garcez

Perceptron’s Linear Separability

i1

i2

i1

i2

XOR

© Artur Garcez

Perceptron’s Linear Separability

i1

i2

Requires more Inputs, more Hidden Neurons,
or the use of a Curve!

© Artur Garcez

There are two AI paradigms: symbolic and connectionist.
Symbolic AI tries to model the (processes of the) mind by
manipulating symbols. Connectionist AI tries to model
(properties of) the brain using artificial neural networks.
Hybrid Systems combine and relate the two.

Input neurons normally use h(x) = x as activation function,
i.e. they simply propagate the input.

W indicates the variation applied to the weight vector W
such that New_W = Old_W + W.

The art of defining the learning rate: normally < 1.0;
 = 0.001 (slow and safer), = 0.9 (fast and risky).

Notes

© Artur Garcez

Many different types of neural
networks exist!

• Multilayer Feedforward Nets (classification)

• Hopfield Networks (associative memory)

• Radial Basis Function Nets (density estimation)

• Support Vector Machines (pattern recognition)

• Self Organising Maps (clustering)

• Deep Belief Networks (image/audio processing)

• Deep Boltzmann Machines (distribution estimation)

• etc, etc.

Different networks are necessary for different problems!

© Artur Garcez

Multilayer Perceptron

Input Vector

Output Vector

Input layer

Hidden layers

Output layer

© Artur Garcez

Multilayer Perceptrons are
Universal Approximators

Neural Networks with as few as a single hidden
layer with sigmoid activation function can
approximate virtually any function of interest.

Theorem [Cybenko, 1989]: Let h: be a continuous and sigmoid
function, i.e. lim x- h(x) = 0 and lim x h(x) = 1. Then, finite sums
of the form:

g(x) = j j h(Wj x + j), x In

with parameters j, j and Wj n, are such that g(x) - f(x) <
for any continuous function f(x).

© Artur Garcez

Learning in
Multilayer Perceptrons

We need to find j, j and Wj such that
g(x) approximates f(x)

x
420-2-4

1

0.8

0.6

0.4

0.2

0

x
420-2-4

4

2

0

-2

-4

x
420-2-4

4

2

0

-2

-4

g(x) = j j h(Wj x + j)

© Artur Garcez

Semi-Linear Activation Function

h(x) = 1 / (1 + e
-x

)

h’(x) = e
-x

/ (1 + e
-x

)
2

x
420-2-4

1

0.8

0.6

0.4

0.2

0x
420-2-4

1

0.8

0.6

0.4

0.2

0x
420-2-4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

 = 1/2 = 1 = 2

© Artur Garcez

Backpropagation

A computationally efficient method for
training multilayer perceptrons.

The neural learning algorithm most
successfully applied in industry.

It computes an estimate of the gradient of an
error function (EW) w.r.t. a set of weights W

EW = EW , EW , … , EW

W11 W12 Wij

© Artur Garcez

Gradient Descent

The gradient of EW is the vector pointing in the direction
of the fastest growth of EW, perpendicular to contour lines.

x
 x f

The iterative application of changes

W = - . EW

to W tries to minimise

EW = ½ i (oi - ti)
2

EW

© Artur Garcez

Backpropagation
Learning Algorithm
1. Propagate

2. Compute Error

3. Back-propagate Error and

Change Weights

Input Vector

Output Vector

1 3

Target Vector

2

© Artur Garcez

Propagate

i1 i2 i3

o1

a b

Ub = i (ii .Wb, ii
) + θb

h(Ub)

h'(Ub) = e-Ub / (1 + e-Ub)
2

h(Ub) = 1/1+e-Ub

Wb, i1

Wb, i2

Wb, i3

© Artur Garcez

Compute Error

i1 i2 i3

o1 e1 = Obtained output (o1) - Target output (t1)

Note:

• A Training Example is a pair

(input vector, target output)

• e1 is the (local) error of output o1.

• EW = ½ i (oi - ti)
2 is the network’s global

error (which we want to minimise)

© Artur Garcez

Backpropagate Error and
Change Weights

i1 i2 i3

o1

a b

b = W1 . o1 . h'(Ub)

W1 . o1

W1

W1 = - . o1 . h(Ub)

o1 = (o1- t1) . h'(Uo1)

W2 = - . b . i3

W2

θb = - . b

© Artur Garcez

i1 i2 i3

ok

Wji1

k

j

Wji2
Wji3

Wkj

Uj h’(Uj)

oj

h’(Uk)Uk

ekUj = i (Wj,ii
. ii) + j

oj = h(Uj), where h(x) = 1/(1+e-x)
h'(Uj) = e-Uj / (1 + e-Uj)

2

Uk = j (Wkj . oj) + k

ok = h(Uk)

h'(Uk) = e-Uk / (1 + e-Uk)
2

ek = ok – tk

ok = ek . h’(Uk)

ej = Wkj . ok

j = ej . h’(Uj)

Wkj = - . ok . oj

Wjii
= - . j . Ii

and don’t forget the biases…

ok

ej

j

© Artur Garcez

Backprop. computes
EW = EW /W efficiently

i

j

Note:

EW = ½ i (oi - ti)
2 ei = oi – ti

oi = h(Ui) Ui = j (Wij . oj)

oi = ei . h’(Ui) W = - . oi . h(Uj)
(oi is the local gradient)

Wij

EW

ei

EW
=

oi

ei

Ui

oi

Wij

Ui

ei 1 h’(Ui)
oj = h(Uj)

oi

oj

© Artur Garcez

Backprop. computes
EW = EW /W efficiently

i

j

oi

oj

When i is an output neuron W = - . ei . h’(Ui) . oj

What if i is a hidden neuron (hi)?
What if there are many hidden layers? Vanishing gradients

Wij

EW

oi

EW
=

ek . h’k(Uk) . Wki

Ui

oi

Wij

Ui

h’(Ui)
oj

W = - . hi . oj

hi = h’(Ui) k (Wki.ok) (hi, oj are local gradients)

© Artur Garcez

Backpropagation Algorithm

For each example (i = i1,…,ip; t = t1,…,tq) in the training set, do:

For each neuron n in the network in ascending topological order, do:

Compute on = h(U(i)) and dn = h'(U(i))

For each neuron n in the network in descending topological order, do:

If n is an output neuron ok then:

ok = ek . dk, where ek = ok - tk

Wki = - . ok . oi

If n is a hidden neuron hi then:

hi = di . k (Wki ok)

Wij = - . hi . oj

Notes: Each pass through the training set is called an epoch.

Typically, Backprop. takes several epochs to converge.

The algorithm can be extended easily to networks having more than a

single hidden layer. Try it!

© Artur Garcez

Application: Fault Diagnosis

Transformer 01
13,8Kv/230Kv

Generator
01

Breaker
Transformer 01

Breaker
Transformer 02

Breaker
By-pass

Main Bus Auxiliary Bus

Transformer 02
13,8Kv/230Kv

Breaker
Transmission Line 01

Generator
02

Transmission
Line 01

Breaker
Transmission Line 02

Transmission
Line 02

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Alarms Faults

© Artur Garcez

Application: DNA analysis

Minus35 Minus10 Conform. Contact Promoter

-50 DNA +7 Minus35 Minus10 Conform. Contact

Promoter = small DNA sequence at beginning of genes

© Artur Garcez

Lab-based Tutorial

Pole Balancing

F

Backpropagation Learning Algorithm

Generalisation x Overfitting

© Artur Garcez

Lab-based Tutorial (cont.)

We want to estimate F given:
angle and angular velocity ’

…

F

 ’We need a training set and a test set…

© Artur Garcez

Limitations of Backpropagation

Backprop. is about trying to minimise a
training set error…

Optimisation: The problem of local minima

Lack of biological plausibility…

© Artur Garcez

The Problem of Local Minima

• Backprop. performs gradient descent on an error surface;

• It tries to find the global minimum of the error function;

• But, depending on the initial state, it may get stuck in a local minimum.

EW

EW = 0

EW = 0

© Artur Garcez

Changing the Learning Rate

EW

larger
e.g., = 0.3

smaller
e.g., = 0.1

© Artur Garcez

Adding Momentum

M1

M2

M1

M2

Wt = - . EW + Wt –1, where 0 1

Term of Momentum

 = 0.0, small = 0.95, small

© Artur Garcez

Global Minimisation

M1

M2

M1

M2

Momentum does not guarantee global minimisation of EW

Note: EW is a function in n-dimensional space, where n is
the number of input neurons

© Artur Garcez

Generalisation

We expect g (our approximation of f) to
produce reasonable results for examples
not seen during training, i.e. we expect
the learning algorithm to generalise to
unseen cases.

The most likely hypothesis (g) is the
simplest one that is consistent with all
observations (Ockham’s razor).

© Artur Garcez

Generalisation

training examples

new (unseen) case

i1

i2

t1

We try to minimise a training set error

We would like to minimise a generalisation error

© Artur Garcez

Estimating Generalisation Error

Partition the set of examples into a
training set and a test set.

The test set is never seen by the
network during training.

The test set error is an estimate of the
generalisation error.

© Artur Garcez

n-fold Cross-Validation

Divide the set of examples E into n
subsets E1, E2, … , En

For each Ei (1 i n), train a network
with E – Ei and test it with Ei

Calculate the averaged test set error

. . .

Note: Leaving m out = (|E| / m)-fold cross validation.

© Artur Garcez

Model selection

Note: n-fold cross-validation on m different neural models (with different
numbers of hidden neurons) can also be used to select the best model.

Network 1 Network n

…

i1 i2 i3 i4

W = 1

1/n 1/n

© Artur Garcez

Bootstrapping

Create k (pseudo) sets of examples
E1, E2, … , Ek by randomly selecting |E|
elements (with replacement) from E

For each Ei (1 i k), train a network
with E – Ei and test it with Ei

Calculate the averaged test set error

© Artur Garcez

Noisy Data

i

t

Note: If the set of training examples contains noise,
the training set error must not be zero!

© Artur Garcez

Overfitting

Note: Typically caused by too many hidden neurons or
not enough training examples, overfitting results in good
training set performance and poor test set performance.

i

t desired

obtained

© Artur Garcez

Generalisation

Assume Ockham’s razor

Assume set of examples is representative

Check Training set performance x Test set performance

EW

Epochs
100 200 300 400 500

2.0

1.0

Training set error

Test set error

Overfitting

© Artur Garcez

Testing the Network is Key!

i

t

© Artur Garcez

Learning and Generalisation

Backprop. is about trying to minimise a training set error…

Problem of local minima: add momentum, vary learning rate

…but learning is about trying to minimise a generalisation
error

Estimate using test set error, cross-validation, bootstrapping

(Note: generalisation error approaches training set error
when the number of training examples grows)

In addition, in the presence of noisy training examples or
to check for overfitting, testing the network is key!

