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The AI revolution...
The promise of AI: 

Education (active learning)
Finance (time series prediction)
Security (image and speech recognition)
Health (sensors, companions, drug design)
Telecom and Tech (infrastructure data analysis)
Gaming (online learning) 
Transport (logistics optimization, car industry)
Manufacturing, Retail, Marketing, Energy...

US$40B investment in AI (mostly ML) in 2016 and 
growing, but AI adoption still low in 2017 (McKinsey)



Brain/Mind dichotomy

Symbolic AI: a symbol system has all that is 
needed for general intelligence 

Sub-symbolic AI: intelligence emerges from the 
brain (neural networks)



AI revolution mainly due to...

… deep learning

Very nice original idea (deep belief nets; semi-su-
pervised learning) then turned/engineered into 
systems that work in practice using backprop...

Very successful/state-of-the-art at object recogni-
tion, speech/audio and games, language transla-
tion, and some video understanding 



Deep Networks (convolutional)

School bus OstrichAdversarial perturbation

c.f. Intriguing Properties of Neural Networks, Szegedy et al., 
https://arxiv.org/abs/1312.6199, 2014 

https://arxiv.org/abs/1312.6199


  

Neural-Symbolic Systems

Cognitive Science

Logic
 Learning

Neural Computation

Neuroscience

One Structure for Learning and Reasoning 
In AI: KR+ML



  

Why Neurons and Symbols?

“We need a language for describing the 
alternative algorithms that a network of neurons 

may be implementing” L. Valiant

(New) Logic + Neural Computation

GOAL: Learning from experience and reasoning 
about what has been learned in an uncertain 

environment in a computationally efficient way.



  

Neural-Symbolic Methodology
high-level symbolic representations 

(abstraction, recursion, relations, modalities)

translations

low level, efficient neural structures
(with the same, simple architecture throughout)

Analogy: low-level implementation (machine code) of 
high-level representations (e.g. java, system 

requirements)  



  

A Foundational Approach
(as opposed to the neuroscience or the engineering approach)

One Structure for Learning and Reasoning: 

Take different tasks, consider what they have in 
common, formalize, evaluate and repeat

KEY: controlling the inevitable accumulation of errors 
(robustness) 

Applications: training in simulators, robocup,  
evolution of software models, bioinformatics, power 

plant fault diagnosis, semantic web (ontology 
learning), general game playing, visual intelligence, 
finance, explainable AI for personal development.



  

Neural-Symbolic Learning Cycle

Background 
knowledge

Revised 
knowledge

Neural Network

Trained Network

Data

Consolidation

Translation

Extraction



  

Connectionist Inductive Logic Programming 
(CILP) System 

A Neural-Symbolic System for Integrated Reasoning and 
Learning (neural nets + logic programming)
• Knowledge Insertion, Revision (Learning) and Extraction 

    (based on Towell and Shavik, Knowledge-Based Artificial Neural Networks.  
 AIJ 70:119-165, 1994)

CILP = backpropagation with background knowledge (BK) 

•  Applications: DNA Sequence Analysis, Power Systems Fault Diagnosis
CILP test set performance is comparable to backprop.

CILP test set performance on small training sets is comparable to KBANN 
and better than backprop.

CILP training set performance is better than backprop. and KBANN



  

r1:  A  B,C,~D; 

r2 : A  E,F;

r3 : B 

CILP Translation Algorithm
A BA B

W WW

1 h1 2 h2 3 h3

B FE DC

WWW -WW

Interpretations

THEOREM: For any logic program P there exists a neural network N 
such that N computes P
based on Holldobler and Kalinke’s translation, but extended to sigmoid neurons (backprop) 
and hetero-associative networks
Holldobler and Kalinke, Towards a Massively Parallel Computational Model for Logic 
Programming. ECAI Workshop Combining Symbolic and Connectionist Processing , 1994.



  

Power Plant Fault Diagnosis 

1     2    3    4    5     6     7    8    9   10   11  12  13  14  15   16  17   18  19   20  21  22   23  24   25  26   27  28  29  30   31  32

  1     2     3    4     5     6     7     8    9    10   11   12  13   14   15   16   17   18   19   20  21   22   23

Mapping 23 alarms to 32 faults, with 
35 rules (with errors) in the BK 

Transformer 01
13,8Kv/230Kv

Generator
01

Breaker
Transformer 01

Breaker
Transformer 02

Breaker
By-pass

Main Bus Auxiliary Bus

Transformer 02
13,8Kv/230Kv

Breaker
Transmission Line 01

Generator
02

Transmission
Line 01

Breaker
Transmission Line 02

Transmission
Line 02

First real-world application of CILP



  

Background Knowledge (35 rules with errors)
278 examples of single and multiple faults

Fault(ground,close-up,line01,no-bypass) IF 
Alarm(instantaneous,line01) AND 
Alarm(ground,line01)

There is a fault at transmission line 01, close to the power 
plant generator, due to an over-current in the ground line 
of transmission line 01, which occurred when the system 
was not using the bypass circuit.

Power Plant Fault Diagnosis 



  

Power Plant Fault Diagnosis (results)

CILP achieves accuracy comparable to that of networks 
trained with backprop. or KBANN with the same BK, but it 
learns faster than both, and it performs better on smaller train-
ing sets (human-like computing?).

We attribute this to the soundness of the CILP translation (i.e. 
the above theorem; KBANN isn't provably sound).

For details:  Garcez, Broda and Gabbay, 
Neural-Symbolic Learning Systems,
Springer, 2002.



The need for Knowledge Extraction

Correctness / soundness
Proof history (goal-directed reasoning)
Levels of abstraction (modularity)
Transfer learning (analogy)
System maintenance/improvement



DARPA's Explainable AI

• XAI = Interpretable ML
• Explanation = knowledge extraction, not XAI



Knowledge Extraction techniques

• Soundness is important!
• Pedagogical vs Decompositional
• Early methods: MofN, CILP
• Decision tree extraction - TREPAN
• Automata extraction - recurrent networks
• Reducing harm from gambling: a practical 

application of knowledge extraction
• Current work: extraction from deep nets, soft 

decision trees, probabilistic MofN, distilling...



  

CILP Rule Extraction

• Knowledge is extracted by querying/sampling 
the trained network;

• A partial ordering helps guide the search, 
reducing complexity on the average case;

• A proof of soundness guarantees that the rules 
approximate the behaviour of the network;

• Rule simplification and visualization 
techniques help experts validate the rules;



Soundness
• A guarantee that the explanation extracted reflects the 

behavior/semantics of the neural network
• Sound/complete extraction implies a loss in 

performance (guarantee in the limit only)
• Be suspicious of knowledge extraction that produce 

higher accuracy than the neural net
• In practice, efficient extraction may be unsound (and 

work more like a learning algorithm)
• Soundness is needed e.g. if neural net is used in a 

safety-critical domain, e.g. self-driving car... 



Verification of Neural Nets
Whose fault is it when a self-driving car gets into 
an accident?

Reluplex: An Efficient SMT Solver for Verifying Deep Neural 
Networks, Guy Katz, Clark Barrett, David Dill, Kyle Julian, 
Mykel Kochenderfer, https://arxiv.org/abs/1702.01135

Neural-symbolic monitoring and adaptation, Alan Perotti, Artur 
S. d'Avila Garcez, Guido Boella, IJCNN 2015  

https://arxiv.org/abs/1702.01135


Extraction methods 

Algorithms:
Pedagogical: treat network as an oracle to query in-
put/output patterns
Decompositional: inspect the internal structure of 
the network
Eclectic: consider doing both of the above

Explanation:
Explanation of a case or instance (distilling, feature 
importance ranking, visualization)
Model description (knowledge extraction) 



MofN and CILP extraction algorithms

• MofN [1]: realization that the building block of a 
neural net is very good at learning/ 
representing MofN rules:
If 2 of (a,b,c) are true then x is true

 

• CILP [2] sound extraction algorithm
[1] Knowledge-based artificial neural networks, G. Towell 
and J. Shavlik, AIJ, 1994
[2] Symbolic knowledge extraction from trained neural net-
works: A sound approach, A. d'Avila Garcez, K. Broda, D. 
Gabbay, AIJ, 2001. 

x

a b c



  

CILP Extraction Algorithm (discrete case)

THEOREM: CILP rule extraction is sound

Challenge: efficient extraction of sound, readable knowledge from 
large-scale networks (100's of neurons; 1000's of connections)

{-1,1,1}

{1,1,1}

{1,-1,-1}

{1,1,-1} {1,-1,1}

{-1,1,-1}

{-1,-1,-1}

{-1,-1,1}

[a,b,c]

a  x
b  x
c  x

b, c  x
a, c  x
a, b  x

1 (a, b, c)  x

2(a, b, c)  x



TREPAN

Extracts decision trees from trained neural 
networks:

• Treats neural net as black-box (oracle) from 
which to query for input/output patterns

• Samples data from the training set or 
synthetic data to generate examples for the 
decision tree training  

• Simplifies the rules in the trained decision 
tree into MofN rules
Extracting tree-structured representations of trained net-
works, Mark W. Craven and Jude W. Shavlik, NIPS 1995



Recent application: Reducing harm 
from gambling
• 2014-16 EPSRC/InnovateUK project with 

BetBuddy ltd.
• Trained a neural net to predict whether 

someone should self-exclude from the game 
based on transaction data: frequency of play, 
betting intensity, variation, etc. (altogether 
some 25 markers)

• Used self-exclusion as a proxy for potential 
harm (avoids use of much more complex 
model of  addiction) 



Reducing harm from gambling
• Neural nets and Random Forests performed 

considerably better than logistic regression 
and Bayesian nets

• BetBuddy ltd. system is required to provide 
explanation to the regulator, gambling 
operator and to the player!

• Extracted decision tree can help debug the 
system and improve results too: “Are they 
based in Germany?”



TREPAN variations: 
 Are at least 3 of these true: 

• Age > 31
• “Frequency” trend not significant
• “Variability” risk factor is high
• “Intensity” increased 49%+ vs previous period

Has “intensity” increased 22%+ 
vs the previous period? 

Do they score medium/high on 
“Variability” stat. significance?

Is increase in “Frequency” stat. 
significant at the 10% level?

Are they based in Germany?

Do they score zero on “Session 
Time” statistical significance?

Are they male?

Score low, med or high on 
“Frequency” stat. significance?

No

Yes

SE

NO

NO

NO

SE

SE

SE

NO

NO

SENO Predict Self-
Excluder

Predict Not a 
Self-Excluder

C. Percy, A. S. d'Avila Garcez, S. Dragicevic, M. Franca, G. Slabaugh and T. Weyde. The 
Need for Knowledge Extraction: Understanding Harmful Gambling Behavior with Neural 
Networks, In Proc. ECAI 2016, The Hague, September 2016.

Frosst and Hinton: Distilling a Neural Network Into a Soft Decision Tree, AI-IA CEX work-
shop, Bari, September 2017. 



Recurrent networks
• Extraction of state transition diagrams...

Extracting Automata from Recurrent Neural Networks Using Queries 
and Counterexamples, Gail Weiss, Yoav Goldberg, Eran Yahav, 2017 
https://arxiv.org/abs/1711.09576

Learning and Representing Temporal Knowledge in Recurrent Net-
works, Rafael V. Borges, Artur d'Avila Garcez, Luis C. Lamb, IEEE 
TNNLS, 2011

CrMeth = M (level of methane is critical) 
HiWat = W (level of water is high)
PumpOn = P (pump is turned on)

https://arxiv.org/abs/1711.09576


Extraction from RBMs and DBN

Knowledge extraction from RBMs (originally the building block of 
(modular) deep nets, c.f. Hinton's Deep Belief Nets)

Each rule has a confidence value ∑||w||/n 



Transfer Learning

     S. Tran and A. S. d'Avila Garcez. Deep Logic Networks: Inserting 
and Extracting Knowledge from Deep Belief Networks. IEEE 
Transactions NNLS, Nov, 2016

MNIST TiCC ICDAR



Probabilistic MofN

• We can improve the accuracy of rules extracted 
from RBMs by extracting MofN rules

• Search values for M given extracted rules, e.g. 
M=0,1,2,3 in

2.970 : h
2
 ← M of {x,~y,z}

Extracting M of N Rules from Restricted Boltz-
mann Machines, Simon Odense and Artur S. d'Avi-
la Garcez, ICANN 2017



Explainable AI = ML + KR

Source: DARPA

• I'm sorry your credit application was denied...

• What should I do to get accepted the next time?



Ethical issues
Recall our extracted decision tree: Are they 

male? Yes/No
This is apparently illegal; gender cannot be a 

feature of the decision
Much recent work on “which features to keep 

out so that ML system is ethical?”
This is the wrong question... there are many 

unknown proxies in the data 
Make system interpretable instead and decide 

on whether or not to intervene!
c.f. Rich Caruana's NIPS 2017 talks



How to intervene

• E.g. in healthcare, this may depend on whether 
you're the hospital or the insurance company

• Suppose this is your interpretable model:

age

risk intervention

40 80 100



Related Work

Distillation as a Defense to Adversarial Perturba-
tions against Deep Neural Networks, Nicolas Pa-
pernot, Patrick McDaniel, Xi Wu, Somesh Jha, 
Ananthram Swami, 
https://arxiv.org/abs/1511.04508



  

CILP extensions (richer knowledge)

• The importance of non-classical reasoning: preferences, 
nonmonotonic, modal, temporal, epistemic, intuitionistic, 
abductive reasoning, value-based argumentation 
(dialogues), etc.

• New applications: normative reasoning (robocup), 
temporal logic learning with model checking, software 
model adaptation (business process evolution from text, 
e.g. email), training and assessment in simulators 
(driving test), visual intelligence (action classification in 
video), semantic web...



  

CILP network ensembles (deep structures)
Connectionist Modal Logic

W1

W3W2

Modularity for learning; accessibility relations for modal, temporal 
reasoning, disjunctive information, etc.

Good trade-off between expressiveness and computation

THEOREM: For any modal, temporal, epistemic, etc. program P there ex-
ists an ensemble of neural networks N such that N computes P.



  

Connectionist Temporal Reasoning and Learning 

Agent 1 Agent 2 Agent 3

t1

t2

t3

at least 1 muddy child

3 muddy children

at least 2 muddy children

The muddy children puzzle (children are playing in a garden; at least one of 
them is muddy; they can see if the others are muddy, but not themselves; a 
caretaker asks: do you know if you’re muddy?). A full solution to the puzzle can 
only be given by a two-dimensional network ensemble. 

Learning with modal background knowledge is faster and offers better accuracy 
than learning by examples only (93% vs. 84% average test set accuracy)



  

Three wise men, kings and hats, etc...
• Various such logic puzzles and riddles can be useful at 

helping us understand the capabilities and limitations 
of neural models 

A certain king wishes to test his three wise men. He arranges them in a circle so that they

can see and hear each other. They are all perceptive, truthful and intelligent, and this is

common knowledge in the group. It is also common knowledge among them that there are

three red hats and two white hats, and five hats in total. The king places a hat on the head

of each wise man in a way that they are not able to see the colour of their own hats, and

then asks each one whether they know the colour of the hats on their heads.

For details:  Garcez, Lamb and Gabbay, 
Neural-Symbolic Cognitive Reasoning,
Springer, 2009.



  

Combining (Fibring) Networks

.

.

.

.

.

.

.

.

.

.

.

.

Network A

Network B

fibring  function

Can represent functions in unbounded domain: extrapolation!

Garcez and Gabbay, Fibring Neural Networks, In Proc. AAAI 2004

A neuron that is a network! Neuromodulation?



  

CILP++

• Allows the direct use of neural networks to 
solve ILP problems 

• More soon...
 França, M. V. M., Zaverucha, G. and Garcez, A. 

(2014). Fast relational learning using bottom clause 
propositionalization with artificial neural net-
works. Machine Learning, 94(1), pp. 81-104.



  

CILP Cognitive Model: Fibred Network 
Ensembles

meta-level 
relations

fibring functions

object-level



  

Applications (1)
Training and Assessment in Simulators

● Learning from observation of experts and trainees at task 
execution, and reasoning online to provide feedback to the user

● System seeks to adapt in real-time to the skills of the user, 
whether an experienced driver or a learner.

● To do so, it uses temporal knowledge insertion and extraction 
from stacks of RBMs and RTRBMs

L. de Penning, A. d'Avila Garcez, L. Lamb and J. J. Meyer. A Neural-Symbolic 
Cognitive Agent for Online Learning and Reasoning. IJCAI'11, July 2011



  

 Applications (2)
Software Model Verification and Adaptation 

Verification: NuSMV
Adaptation: Neural-Symbolic System

Borges, Garcez, Lamb. Learning and Representing Temporal Knowledge in Recurrent 
Networks. IEEE TNN 22(12):2409 - 2421, Dec 2011.

See also: F. Vaandrager, Model learning, CACM, Feb 2017.



  

V&A applied to Pump System 

The pump system controls the levels of water in a mine to avoid 
the risk of overflow; an initial, partial system description is available.

State variables: CrMeth (level of methane is critical) 
HiWat (level of water is high)
PumpOn (pump is turned on)

Safety property in LTL: G¬(CrMeth ^ HiWat ^ PumpOn) 

Partial system spec (background knowledge; s = sensor):
 



  

Verification (NuSMV) and 
example generation

A training example:
sCMOn → TurnPOn → sHiW → ¬PumpOn

Neural network is three-valued {-1,0,1} CILP network, sim-
ilar to NARX, trained with standard backprop. 

Repeat the process until the property is (hopefully) satisfied
(i.e. no counter-example is generated)

Corresponding to new rule: If methane is critical then turn the 
pump on, unless the water level is high...



  

Network Visualization
CrMeth = M (level of methane is critical) 
HiWat = W (level of water is high)
PumpOn = P (pump is turned on)



  

Power Plant Fault Diagnosis 
(real problem; ongoing validation)

Safety property: G¬(Fault(_,_,line1,bypass) ^ Fault(_,_,line2,bypass))

(diagrams are annotated with alarms which trigger derived faults) 



  

Run-time Monitoring
● So far, LTL property is outside the neural net
● Let's consider property adaptation next.



  

Neural Encoding

● Every tree node implements a truth-table for one operator

● Every truth-table can be represented in a CILP neural net



  

Run-Time Neural Monitor

● The tree structure is “flattened” into an 
ensemble of CILP networks 



  

Property monitoring



  

Monitor verdict = stable output



  

Performance
Bottleneck is matrix multiplication. Matrix growth is quadratic w.r.t. 
length of property. But matrices are sparse (with constant number 
of non-zero elements per row; tree branching factor is constant)



  

Learning = property adaptation



  

Local Training
Propagate from observations to verdict and backpropagate label 
to abduce local input-output patterns (e.g. for network 2).



  

Adaptation: bending the rules

A. Perotti, G. Boella and A. S. d'Avila Garcez, Runtime Verification Through 
Forward Chaining. In Proc. RV'15, September 2015.

A. Perotti, A. S. d'Avila Garcez and Guido Boella. Neural-Symbolic Monitoring 
and Adaptation. In Proc. IJCNN 2015, July 2015.



Logic Tensor Networks (LTNs)

• Neural nets with rich structure can represent 
more than classical propositional logic 

• But neural nets are essentially propositional 
(i.e. do not use variables explicitly)   

• To take advantage of full FOL, a more hybrid 
approach is needed

• One needs to get the representation right first: 
the logical statements act as (soft) constraints 
on the neural network...



Semantic Image Interpretation (1)

Normally, every cat has a tail

Q. Get me the red thing next to the sheep

A. The horse's muzzle? Yes.

Make sure your 
system does not 
distinguish cats from 
wolves 99% 
correctly just because of   
the snow in the 
background...

Given a picture extract a graph that describes its semantic content



In LTN, we build the graph by predicting facts given the bounding 
boxes, e.g.: Cow(b1), PartOf(b2,b1), Head(b2), etc.

In LTN, an object is described by a vector of features: e.g.      
John = (NI number, age, height, 3x4 picture, etc.)

Object detection (bounding box detection and labeling) is 
performed by an object detector (Fast RCNN)

LTN assigns a degree of truth (the grounding G) to atomic 
formulas: G(Cow(b1)) = 0.65, G(PartOf(b2,b1)) = 0.79...

G(bi) = <score(Cow), score(Leg) … score(Head), x, y, x’, y’>

 

Semantic Image Interpretation (2)

Geometric features:
the coordinates of bi

Semantic features: the score of the
bounding box detector on bi

for each class of objects



LTN in action

• Grounding for PartOf is given by the % of 
intersection between two bounding boxes

• One can query the knowledge-base (KB) to 
obtain further groundings for training

• Learning is... maximizing satisfiability!



Learning in LTNs...
Given a KB and groundings, LTN calculates a grounding 
for the entire KB compositionally in the “usual ways”...



The Tensor Network...

More soon...

Fast RCNN + LTN improves on Fast RCNN (state of the art at the time) at object 
type classification:

I. Donadello, L. Serafini and A. S. d'Avila Garcez. Logic Tensor Networks for 
Semantic Image Interpretation. In Proc. IJCAI'17, Melbourne, Australia, Aug 2017.



And finally, the knowledge graph...

• Given a trained LTN, start with an unlabeled graph.

• For every bounding box bi ask the LTN for the set of facts 
{Cow(bi), Leg(bi), Neck(bi), Torso(bi),...} and select the 
facts with grounding larger than a threshold.

• For every bounding box bi ask the LTN for the set of facts 
{PartOf(bi, bj)} with j = 1,…,n. Then, select the facts with 
grounding larger than a threshold.

cow

leg neck ? ?

has
b1

b2



Related Work
Compare and contrast with Markov Logic Nets 
(MLNs), Inductive Logic Programming ILP-based 
approaches (e.g. ProbLog), Probabilistic Program-
ming (WebPPL), lifted statistical relational AI... 



Neural-Symbolic Computing

• Neural networks provide the machinery for 
effective learning and computation

• Perception alone is insufficient: AI needs 
reasoning, explanation and transfer

• Rich knowledge representation models: 
nonmonotonic, relational (with variables), 
recursion, time, uncertainty... 

• Neural-symbolic computing: neural networks 
with logical structure (compositionality)



  

Recent developments in Neural-
Symbolic Computing

• Knowledge Extraction from Deep Nets: 
 S. Tran and A. S. d'Avila Garcez. Deep Logic Networks: Inserting 

and Extracting Knowledge from Deep Belief Networks. IEEE 
TNNLS, Nov, 2016

• Relational (full FOL) Learning in Tensor Networks (with 
Tensorflow implementation):

 L. Serafini, I. Donadello and A. S. d'Avila Garcez. Learning and 
Reasoning in Logic Tensor Networks: Theory and Application to 
Semantic Image Interpretation. In ACM SAC 2017, April 2017.

• Applications of knowledge extraction in industry: 
understanding pathways to harm in gambling and 
reducing harm from gambling (c.f. BetBuddy.com)



  

Conclusion: Why Neurons and Symbols

To study the statistical nature of learning and the logical nature of 
reasoning.

To provide a unifying foundation for robust learning and efficient 
reasoning.

To develop effective computational systems for integrated reason-
ing and learning.

Thank you!
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