Fast Relational Learning using
Neural-Symbolic Systems (CILP++)

Artur S. d’Avila Garcez

City, University of London
a.garcez@city.ac.uk

ACAI, Ferrara
30 August 2018

Introduction
@0000

Relational Learning

@ Learning a first-order logic theory from examples (in the
presence of uncertainty)

e By searching for candidate hypotheses at first-order level or
through propositionalization

o Relevant for the analysis of complex networks: drug design
in bioinformatics, link analysis in social networks, etc.

o Related work: (probabilistic) ILP, deep networks, MLNSs,
BLOG, StarAl (lifted inference), etc.

@ Hypothesis search (sound and sometimes complete at
inducing theories) can be costly (but see streaming ILP
(ILP’2013), online relational learning (ECML12) and more
recent developments (including differentiable (d)ILP, JAIR
2018).

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Introduction
(o] Jelele]

Relational Learning in Neural-Symbolic Systems

@ A number of attempts at first-order (and higher-order) logic
learning in neural nets: semantic approach (Hitzler et al),
fibring, topos (Osnabruck), association (SHRUTI),
unification, etc.

@ Propositionalization offers a trade-off between information
loss and efficiency; it seems a natural choice for use with
neural nets.

@ CILP++ is a neural-symbolic system that can solve ILP
problems efficiently (through propositionalization) using a
neural network trained with backpropagation (Franca,
Zaverucha and d’Avila Garcez, Mach. Learn., July 2013)

g,
A5 CITY UNIVERSITY
A/, LONDON

Introduction
[e]e] Tele]

Efficient Relational Learning using CILP++

@ CILP++ is composed of:

e Bottom Clause Propositionalization (BCP): creates a
bottom clause for each positive and negative ILP example

o Artificial Neural Networks (ANNSs) trained with
backpropagation: generalising from a set of bottom clauses
given as binary vectors (c.f. Muggleton and
Tamaddoni-Nezhad, QG-GA, Mach. Learn. 2008)

e Presenting the trained knowledge in relational form:
mapping trained features into first-oder logic
representations (ICCSW 2013, Dagstuhl OASiIcs, 2013)

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Introduction
[e]e]e] o]

Summary of Results on Relational Learning

@ CILP++ vs. ILP system Aleph
o CILP++ achieved comparable accuracy while being
consistently faster
e Standard backprop vs. early stopping: trade-off between
accuracy and efficiency
° BVCP vs. the propositionalization component of RSD
(Zelezny and Lavrac, 2006)
e BCP achieved overall better accuracy and was faster
e BCP with neural nets is much better than RSD with neural
nets; BCP with C4.5 is comparable to RSD with C4.5

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Introduction
0000e

Summary of Results on Relational Knowledge

Extraction

@ Initial evaluation of FOL rules learned by CILP++
(BCP-rules), extracted from the neural network trained
using BCP propositionalization:

o We compared BCP-rules with rules produced by Aleph (we
used RIPPER (Cohen, 1995) as the rule learner, but other
propositional rule learners can be used)

e As expected, there is information loss in comparison with
Aleph, but in exchange for considerable speed-ups and
smaller (more compact) rule sets

e Although our extraction algorithm shows good fidelity to
network, the lifting of FOL rules from trained neural nets
can improve accuracy!

@ Experiments on FOL knowledge extraction from neural

networks have been limited and are ongoing. Next step:

use macro operators (R. Mooney) with CILP++ ﬁfgﬁmmm

Preliminaries
€000

A simple example: Family Relationship

@ BCP: generates a bottom clause for each (positive or
negative) example; converts each bottom clause into a
binary vector (similarly to QG-GA)

Background Knowledge: Positive Examples:
mother(mom1, daughter1) motherinLaw(mom1, husband1)
wife(daughter1, husbandi) Negative Examples:
wife(daughter2, husband2) motherinLaw(daughter1, husband2)

@ Using Progol’s bottom clause algorithm (Muggleton, 1995):
e |, = [motherinLaw(A, B) < mother(A, C), wife(C, B)]
e | _ = [motherinLaw(A, B) < wife(A, C)]
@ BCP features: mother(A, C), wife(C, B), wife(A, C)
@ Hypothesis: Is the use of a set of bottom clauses useful for
learning and generalization? cdx U VERSITY
ﬁ LONDON

Preliminaries
0®00

Neural networks and Backpropagation

@ Popular connectionist models with application in many
areas: pattern recognition, games, vision, speech, control

@ CILP++ uses a multi-layer perceptron (MLP) with three
layers of artificial neurons connected in a feed-forward
manner; one could use a deep network instead, or even a
recurrent network as used by CILP.

@ Error back-propagation is a widely used training algorithm
for MLPs; it seeks to minimize an error function through
gradient descent

@ When using error back-propagation, a common way of
dealing with overfitting is to use early stopping

Hidden
Input
Output

[

A3 CITY UNIVERSITY
/. LONDON

Preliminaries
0000

Early stopping

@ Early stopping aims to avoid overfitting (Caruana et. al.,
2000) by using a validation set as stopping criteria

@ The main early stopping criteria are:

e Stop when the ratio between the validation error and the
current training epoch error gets higher than a specified «;

e Stop when the sum of the current epoch’s training and
validation errors becomes smaller than a specified s for m
consecutive epochs;

e Stop when the validation error keeps increasing for n
consecutive epochs.

@ There is empirical evidence that the first criterion leads to
fair accuracy and faster convergence (Prechet (1997)),
thus it is used by CILP++

ﬁ (L:g':l([gjgléVERSITY

Preliminaries
oooe

The CILP Translation Algorithm (revisited)

(1) (2) ®3) N:
BK={A<—B,C;B<—C,notD,E;D<—E}
. Input
3 Layer
G G w WA
Hidden
) 1| Layer CS 1
= \@5 éﬁ/ ©)
(1) W w w
Output
Layer
Output W " <A> Q @
Layer
@ =

L CITY UNIVERSITY
;A\ /. LONDON

BCP
0

Bottom Clause Propositionalization (BCP)

@ BCP uses Progol’'s bottom clause generation to create
features for each ILP example

@ Each positive example is saturated normally and labeled
as positive (1); negative examples are processed just like
positive ones, but are labeled as negative (-1)

@ All unifications made during bottom clause generation are
stored into hash sets

@ A feature table F is created, consisting of all distinct body
literals from all the bottom clauses created

@ Finally, a binary input vector v of size |F| is created for
each example (set of features) (Vi, v(i) € {0,1})

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

BCP (cont.)

Background Knowledge: Positive Examples

mother(mom1, daughter1) motherinLaw(mom1, husband1)
wife(daughter1, husband1) Negative Examples
wife(daughter2, husband2) motherinLaw(daughteri, husband2)

@ Continuing the family relationship example:
1 = [motherinLaw(A, B) «+— mother(A, C), wife(C, B)]
1_ = [motherinLaw(A, B) « wife(A, C)]

e From L, hash,: e From L _, hash_:
Key Value Key Value

momf1 A daughter1 A

husband1 B husband2 B

daughtert C husband1 C

e F = {mother(A, C), wife(C, B), wife(A, C)}

° vy = 17170 "n?
° vf = 20,0’1% ﬁfgﬁggmm

Connectionist Inductive Logic Programming (CILP++)
[Jole}

Network training

@ The network is fully-connected with near-zero weight
connections

@ Positive examples are associate with a label y = 1 and
negative examples with y = —1

© The heuristic chosen to calculate the training error E is
standard mean-squared error:

E= Z Wiz y)® y’ , Where y; and j; are the label and network
=1
output respectively

© Both standard stopping criteria and early stopping have
been evaluated

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Connectionist Inductive Logic Programming (CILP++)
oeo

Stopping criteria

@ Standard stopping criteria:
@ 300 training epochs have elapsed
@ 95% of the training data satisfies E < 0.1
e 90% of the training data is correctly classified by the
network and no improvements can be seen for 5 training
epochs
@ Early stopping:
o A validation set with ‘5 of the total set of examples was
created
e Attime t, the best model from epochs 1 to t is stored

o If after epoch e, the condition (first criterion of Prechet,
1999)

GL(t) > a, GL(t) = 0.1 (%gg - 1) is satisfied, training

stops "
o CITY UNIVERSITY
;A L. LONDON

Connectionist Inductive Logic Programming (CILP++)
ooe

Building the network and training

1) motherinLaw(A,B) :- mother(A,C), wife(C,B) 2) ~motherinLaw(A,B) :- wife(A,C)

Input

L1: mother(A,C) Input g 0

1 1 0

L L
L2: wife(C,B) e L1 L2 . .
L3: wife(A,C) -
Fiidden Hidden
Layer Layer W

\

Output

Output
Layer

Layer

/
¢1 ¢-1

A2 CITY UNIVERSITY
;A\ /. LONDON

Results (CILP++)
[JeJele]

Description of the Experiments

@ Four CILP++ configurations have been tested:

e st: uses standard backpropagation stopping criteria

e es: uses early stopping

e n%bk: the network is created using n% of the examples in

(E'@in) as BK'

e 2h: when n = 0, the network uses 2 hidden neurons only!
@ Why two hidden neurons in the 2h configurations?

e It can help avoid overfitting in large networks

e Accuracy doesn’t seem to increase substantially with more

than 2 hidden neurons when the input is a binary vector
(Haykin, 2009)

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

'n=0, 2.5 and 5 were used.

Results (CILP++)
0@00

Experimental Results — Accuracy vs. Runtime

Dataset Aleph CILP++g 5 59 CILP++g 59,1 CILP++g 5y

mutagenesis 80.85x(£10.5) 91.70(+5.84) 90.65(+8.97) 89.20(+8.92)
0:08:15 0:10:34 0:11:15 0:10:16

krk 99.6(+0.51) 98.31%(£1.23) 98.32x(£1.25) 98.42(+1.26)
0:11:03 0:04:38 0:04:34 0:04:40

uw-cse 84.91(+7.32) 66.24%(£7.01) 66.08x%(+2.48) 70.01+(+2.2)
0:45:47 0:08:47 0:10:19 0:08:54

alz-amine 78.71(£5.25) 78.99(+4.46) 76.02%(+3.79) 77.08(+5.17)
1:31:05 1:23:42 2:07:04 1:14:21

alz-acetyl 69.46(+3.6) 63.64%(+£4.01) 63.49%(+4.16) 63.30%(+5.09)
8:06:06 4:20:28 5:49:51 2:47:52

alz-memory 68.57(+5.7) 60.44%(£4.11) 59.19% (£5.91) 59.82x(+6.76)
3:47:55 1:41:36 2:12:14 1:19:27

alz-toxic 80.5(+3.98) 79.92(+3.09) 80.49(43.65) 81.73(+4.68)
6:02:05 3:04:53 3:33:17 2:12:17

bold = best result; * indicates statistically significant difference

@ CILP++ achieves better accuracy and runtime in one st

configuration

CITY UNIVERSITY
.. LONDON

@ CILP++{st,2h} is generally faster than Aleph

Results (CILP++)

[e]e] o)

Experimental Results with early stopping

Dataset Aleph

CILP++.52 50bk

CILP++ 5 59k

CILP++,),

mutagenesis 80.85(+10.51)

83.48(+7.68)

83.01(£10.71)

84.76(-8.34)

0:08:15 0:01:25 0:01:43 0:01:50
krk 99.6(+0.51) 98.16%(+0.83) 96.33%(+4.95) 98.31(+1.23)
0:11:03 0:04:08 0:04:28 0:04:18
uw-cse 84.91(£7.32) 68.16%(+£4.77) 65.69%(£1.81) 67.86%(+1.79)
0:45:47 0:04:08 0:04:16 0:04:08
alz-amine 78.71(+3.51) 65.33%(+9.32) 65.44%(+5.58) 70.26% (+7.1)
1:31:05 0:35:27 0:08:30 0:10:14
alz-acetyl 69.46(+3.6) 64.97+(£5.81) 64.88%(£4.64) 65.47(£2.43)
8:06:06 3:04:47 2:42:31 0:25:43

alz-memory 68.57(£5.7)

5343 (£5.64)

54.84(£6.01)

51,57 (£5.36)

3:47:55 1:40:51 3:57:39 1:33:35
alz-toxic 80.5(+4.83) 67.55%(+£6.36) 67.26%(£7.5) 74.48x(+5.62)
6:02:05 0:12:33 0:14:04 0:28:39

@ Considerable speed-ups are obtained, in exchange for

accuracy at times

8,
A2 CITY UNIVERSITY
LONDON

Results (CILP++)
[e]e]e])

Comparison with another Propositionalization

Dataset Aleph BCP+ANN RSD+ANN BCP+C4.5 RSD+C4.5

muta 80.85% (+10.51) 89.20(+8.92) 67.63x(£16.44) 85.43x(£11.85) 87.77(+1.02)
0:08:15 0:10:16 0:11:11 0:02:01 0:02:29

krk 99.6(+0.51) 98.42x(£1.26) 72.38%(+12.94) 98.84%(+0.77) 96.1%(+0.11)
0:11:03 0:04:40 0:06:21 0:01:59 0:05:54

@ BCP achieves better accuracy than RSD overall, while
being slightly faster

@ Accuracy of BCP with ANNs is much higher than RSD with
ANNs

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
0000000

Relational Knowledge Extraction

@ Since BCP features (and neurons) are first-order literals, it
should be possible to extend the CILP knowledge
extraction algorithm directly to obtain first-order rules from
trained CILP++ networks

@ ...but such rules will not obey any ILP restrictions as
imposed by a language bias

@ Franga et. al., ICCSW’13, AAAI Spring Symposium 2015,
contain a first proposal towards an efficient relational
knowledge extraction algorithm using the propositional rule
learner RIPPER (other rule learner could be used)

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
00000000

From CILP++ networks to FOL rules

@ Search for literals whose variables do not obey the
ILP-style variable chaining

@ Using BCP’s hash tables, replace such variables by a
disjunction of ground terms

@ This transformation is provably correct: BCP feature
equivalence theorem

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
[e]e] lelele]e]e]

Example: Family relationship revisited

S| = {motherInLaw(A, B
motherInLaw(A, B
~ motherInLaw(A, B

: — mother(C, B),wife(C,D);
: — mother(A,C),wife(C, B);
:— wife(C,B),parents(C, B, D),dad(E, F)}.

— mother(A,C),wife(C, D), not(dad(E, F))}.

= ==

R, = {motherInLaw(A, B

hash = {D/husband2, D/daughter1, E /husband1,
F/daughter1}

@ From the BCP feature equivalence:
not(dad(E, F)) — not(dad(husband1, daughter1))
wife(C, D) — wife(C, daughteri) v wife(C, husband2)

@ The resulting first-order rule is:

RY = {motherInLaw(A, B) : —mother(A, C), (wife(C, daughterl); wife(C, husband2)),
not(dad(husbandl, daughterl))}.

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
[e]e]e] lelelele]

First-order filtering

@ We can improve results further by making the theory more
compact

@ A modified version of the theory filtering algorithm T-reduce
(A. Srinivasan, The Aleph System, version 5) is applied

e Original T-reduce: removes sets of rules without positive
coverage or that contribute negatively to training set
accuracy

e Modified T-reduce: also removes literals that are always
true, and literals containing no variables

e If applied on RS:

RYOL = {motherInLaw(A, B) - mother(A, C), (wife(C, daughterl); wife(C, husband2))}

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
[e]e]e]e] Telele]

Experimental settings

@ We have evaluated the approach (named BCP+RIPgp,) in
comparison with:

o Aleph (as a baseline)

e BCP + RIPPER (named BCP+RIP)
@ We use the Alzheimers benchmark for comparison
@ The used metrics for evaluation are:

o Classification accuracy
@ Runtime
e Theory size (i.e. total number of literals)

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
[e]e]e]e]e] lele]

Initial Results

Alz-ami Alz-ace Alz-mem Alz-tox

Aleph 78.71(+5.25) 69.46(+4.6) 68.57(£57) 80.5(+4.83)
(baseline) 1:31:05,36.1 8:06:06,47.3 3:47:55,457 6:02:05, 37.9

BCP+RIPyop 73.35(+4.32) 67.8(+3.77) 65.27(+7.11) 78.44(+5.44)
0:19:49,30 0:23:21,20.1 0:25:11,14.4 0:17:41,35.2

BCP+RIPro, 77.73(:4.57) 63.56(+5.06) 57.64(+57) 66.45(:6.93)
0:21:59,30.4 0:26:39,18.7 0:28:45,13.8 0:20:57, 18

Accuracy and theory size averaged over 10-fold cross-validation

@ As expected, Aleph’s accuracy is superior
@ But we produce first-order theories that are more compact

@ And the accuracy of BCP+RIP£g, is even higher than
BCP+RIP in one case \
ﬁ CITY UNIVERSITY
\ /. LONDON

Relational Knowledge
00000080

In Summary

@ CILP++: Competitive accuracy results can be obtained
efficiently using a neural-symbolic approach; in principle,
any ILP dataset can be used with CILP++

@ BCP can be used with any propositional learner (although

some don’t seem to like the idea of bottom clauses very
much)

@ Relational Knowledge Extraction: capable of generating
compact first-order rule sets with negation from trained
neural nets

@ Considerably faster than Aleph, but sometimes with
(sometimes considerable) accuracy loss

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

Relational Knowledge
0000000

Next Steps

@ Evaluation of noise robustness and evaluation in theory
revision tasks (with negation)

@ Apply to first-order knowledge extraction from neural
networks in general (compare with TREPAN and its
variations)

@ Compare accuracy results with other fast and hybrid ILP
approaches, including differentiable ILP

@ A lot of the magic seems to happen in the choice (and
number of copies) of first-order literals to place in the input
and output layers: use macro-operators!?

8,
A2 CITY UNIVERSITY
;A\ /. LONDON

	Introduction
	Preliminaries
	BCP
	Connectionist Inductive Logic Programming (CILP++)
	Results (CILP++)
	Relational Knowledge Extraction

