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What we do!



Human Allied AI

Can we build systems that can seamlessly interact with, learn
from and collaborate with human expert?
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Our Prior Work towards HAAI

1. Tractable modeling of Multi-modal data
2. Efficient Reasoning in large domains
3. Faithful Temporal Modeling 
4. Effective Sequential decision-making
5. Scalable learning with complex relational data
6. Explicit modeling of noise and uncertainty



Bottom line: 
Take your data spreadsheet …
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Latent Dirichlet Allocation

… and apply 
data mining

Gaussian Processes

Boosting

Autoencoder, 
Deep Learning and many more …

Interpretation

t

F (t)

f (t)

Weibull pdf and cdf:

f (t) = bctc-1e-btc

F(t) = 1 - e-btc

therefore:

f (t) = bctc-1 - bctc-1F(t)

thus:
• the Weibull implicitly encodes a subtractive growth process
• growth and decline are polynomial in t
• decline depends on F(t)

Diffusion Models

Distillation/LUPI

Big 
Model

Small
Model

teaches

Features
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ct
s

Big Data Matrix Factorization

Graph Mining 



[Lu, Krishna, Bernstein, Fei-Fei „Visual Relationship Detection“ CVPR 2016]

Most data in the world is stored in 
relational databases

Heterogenous data networks abound



Mining Electronic Health Records is an opportunity to save our lifes and a lot of money. 

PatientID Date Prescribed    Date Filled    Physician    Medication    Dose    Duration

P1            5/17/98            5/18/98         Jones          prilosec 10mg    3 months

PatientID SNP1  SNP2   …  SNP500K

P1         AA      AB                BB
P2         AB      BB                AA

PatientID Gender Birthdate

P1          M      3/22/63

PatientID Date    Physician  Symptoms      Diagnosis

P1       1/1/01    Smith     palpitations   hypoglycemic
P1       2/1/03    Jones      fever, aches    influenza

PatientID Date     Lab Test        Result

P1       1/1/01  blood glucose       42

P1       1/9/01  blood glucose       ??
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Unfortunately, they are noisy and interconnected

Actually, most data in the world stored in 
relational databases



Two trends that drive modern data science
1. Race to deeply understand data
2. Data in a large number of formats

Key Observation

We need a crossover of
Machine Learning
and Probabilistic/ Statistical 
Databases

ScalingUncertainty

Databases/
Logic

Data
Mining 

[Getoor, Taskar MIT Press ’07; De Raedt, Frasconi, Kersting, Muggleton, LNCS’08; Domingos, Lowd Morgan&Claypool ’09; Natarajan, 
Kersting, Khot, Shavlik Springer Brief’15; Russell CACM 58(7): 88-97 ’15]

De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. 
Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.



AI and ML: State-of-the-Art
Learning

Decision trees, Optimization, SVMs, …

Logic
Resolution, WalkSat, Prolog, description logics, …

Probability
Bayesian networks, Markov networks, Gaussian Processes…

Logic + Learning
Inductive Logic Programming (ILP)

Learning + Probability
EM, Dynamic Programming, Active Learning, …

Logic + Probability
Nillson, Halpern, Bacchus, KBMC, ICL, …



Propositional
Logic

First Order Logic

Statistical Relational Learning

Probability Theory Probabilistic Logic

Inductive Logic Programming

Classical Machine
Learning

Prop Rule 
Learning

Deterministic

Stochastic

Learning

No Learning

Prop First-Order

Probabilistic Logic



Example - Relational Probability Trees

male(Person)

chol(Person,Age,Level), Age>40,Level>200

Father (F,Person),diabetes(F)

bmi(Person,W,”55”), W>30

0.8

0.77

0.05

0.3

noyes

noyes

no

no

yes

yes

[Blockeel & De Raedt ’98]

To predict heartAttack(Person)

…



Outline

• State-of-the-art Structure Learning
• Effective Learning 
• Advice Taking 
• Actively Seeking Advice



Learning

• Parameter Learning – Where do the numbers come 
from

• Structure Learning – neither logic program nor 
models are fixed

• Evidence
– Parital assignments of values to variables {burglary = false, 

earthquake = true, alarm = ?,  johncalls = ?, marycalls = 
true}



Up next inside Learning

• Parameter learning – graphical models
• Parameter learning – StaR AI models
• Structure learning – logical models & graphical 

models
• Structure learning – StaRAI models



Maximum Likelihood Estimation

• MLE is the fraction of positive counts over 
total counts

• Example: Bayes net parameters – estimate 
each CPD using MLE

• For each P(X=x|Pa(X) = y), count the number 
of examples of x and y

P(X = x | Pa(X) = y) = N(X = x,Pa(X) = y)
N(Pa(X) = y)



EM Idea
• If data is complete, ML parameter estimation is easy: 

simple counting (1 iteration)
• But what if there are missing values, i.e., we are facing

incomplete data?

1. Complete data (Imputation)
- most probable?, average?, ... value

2. Count
3. Iterate



EM Idea: complete the data
incomplete data

A B
true true

true ?
false true

true false

false ?
complete data

0.5

1.5
1.5

1.5
N

falsefalse

truefalse
falsetrue

truetrue
BA

expected counts

iterate

A B

complete

maximize



EM Idea: complete the data
incomplete data

A B
true true

true ?
false true

true false

false ?

complete

complete data

0.125

1.875
1.5

1.5
N

falsefalse

truefalse
falsetrue

truetrue
BA

expected counts

maximize

iterate

A B



• Parameter learning – graphical models
• Parameter learning – StaR AI models
• Structure learning – logical models & graphical 

models
• Structure learning – StaRAI models



Relational Parameter Estimation
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Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),
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m(cecily,fred),

f(henry,fred),
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m(kim,bob),
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bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,
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+



Relational Parameter Estimation
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Parameter tying



So, apply „standard“ EM
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Solution 1: Aggregators

Population

Rain1Temp1 Rain2Temp2 Rain3Temp3

AverageRainAverageTemp

Deterministic

Problem: Does not take into account the interaction between  Rain and Temp

Stochastic



Solution 2: Combining Rules

Population

Rain1Temp1 Rain2Temp2 Rain3Temp3

Population3Population1 Population2
0
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1st Qtr 2nd Qtr 3rd Qtr 4th Qtr
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0

5 0

1 0 0

1 s t

Q t r

2 n d

Q t r

3 r d

Q t r

4 t h

Q t r

• Top 3 distributions share parameters

• The 3 distributions are combined into one final distribution

• Gradient-descent and EM Methods exist



• Parameter tying: Groundings of same clause

• It is #P-complete to count the number of true groundings
• Generative learning: Pseudo-likelihood
• Discriminative learning: Cond. likelihood

MLN Weight Learning

No. of times clause i is true in data

Expected no. times clause i is true according to MLN
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¶
¶

Slide based on Domingos’ talk



Generative Learning

• Function to optimize:

• Gradient:
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Counts in training data Weighted sum over all possible worlds
No evidence, just sets of constants
Very hard to approximate

Slide based on Domingos’ talk



Pseudo-likelihood
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Pseudo-likelihood
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While effective, still hard to count in many data sets

• Approximate counting techniques exist
(Sarkhel et al. AAAI 2016, Das et al. SDM 2016)



• Parameter learning – graphical models
• Parameter learning – StaR AI models
• Structure learning – logical models & graphical 

models
• Structure learning – StaRAI models



If data is complete:
To update score after local change, 
only re-score (counting) families that 
changed

If data is incomplete:
To update score after local change, 
reran parameter estimation algorithm

Probabilistic Graphical Models

S C

E

D

Reverse C ®E
Delete C ®

E

Add C ®D

S C

E

D

S C

E

D

S C

E

D



Structural EM [Friedman et al. 98]

Training
Data

Expected Counts
EN(X1)
EN(X2)
EN(X3)
EN(H, X1, X1, X3)
EN(Y1, H)
EN(Y2, H)
EN(Y3, H)

Computation

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

H

Y1 Y2 Y3

+

Score & 
Parameterize

Reiterate

EN(X2,X1)
EN(H, X1, X3)
EN(Y1, X2)
EN(Y2, Y1, H)

X1 X2 X3

H

Y1 Y2 Y3



• Given:
– Examples: first-order atomic formulas (atoms), each 

labeled positive or negative.
– Background knowledge: definite clause (if-then rules) 

theory.
– Language bias: constraints on the form of interesting new 

rules (clauses).

Inductive Logic Programming = 
Machine Learning + Logic Programming

The Problem Specification
[Muggleton, De Raedt JLP96]



ILP Specification (Continued)

• Find:
– A hypothesis h that meets the language constraints and 

that, when conjoined with B, implies (lets us prove) all of 
the positive examples but none of the negative examples.

• To handle real-world issues such as noise, we often 
relax the requirements, so that h need only entail 
significantly more positive examples than negative 
examples.



A Common Approach

• Use a greedy covering algorithm.
– Repeat while some positive examples remain uncovered 

(not entailed):
• Find a good clause (one that covers as many positive examples as 

possible but no/few negatives).
• Add that clause to the current theory, and remove the positive 

examples that it covers.

• ILP algorithms use this approach but vary in their 
method for finding a good clause.



• Parameter learning – graphical models
• Parameter learning – StaR AI models
• Structure learning – logical models & graphical 

models
• Structure learning – StaRAI models



• Traverses the hypotheses space a la ILP

• Replaces ILP’s 0-1 covers relation by a “smooth”, 
probabilistic one [0,1]

0
1

…
Ú

Ú

º 1
mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…

=0.882

Vanilla SRL Approach[De Raedt, Kersting ALT04]



Structure learning methods for MLNs

42

• Top-down approach: 
– GSL[Kok & Domingos, 2005], DSL[Biba et al., 2008]
– Start from unit clauses and search for new clauses

• Bottom-up approach: 
– BUSL [Mihalkova & Mooney, 2007], Hypergraph Lifting [Kok & Domingos, 2009], 

Structural Motifs [Kok & Domingos , 2010]
– Use data to generate candidate clauses

• Max-Margin Approach:
– Discriminative learning [Huynh & Mooney, 2008]
– Effectively learns horn clauses 
– Uses regularization to force parameters to zero
– Later extended to online setting



Advises
Pete Sam 
Pete Saul
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… …
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Advises
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Learning via Hypergraph Lifting
[Kok & Domingos, ICML’09]

• Relational DB can be viewed as hypergraph
– Nodes ´ Constants
– Hyperedges ´ True ground atoms
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Learning via Hypergraph Lifting
[Kok & Domingos, ICML’09]

Clustering using “2nd”-order 
MLNs
– Jointly clusters nodes into 

higher-level concepts
– Clusters hyperedges



Advises
Pete Sam 
Pete Saul
Paul Sara

… …
TAs

Sam CS1
Sam CS2
Sara CS1

… …

Teaches
Pete CS1
Pete CS2
Paul CS2

… …
Sam

Pete CS1
CS2
CS3
CS4
CS5
CS6
CS7
CS8

Paul
Pat
Phil

Sara
Saul
Sue

TAs

Advises
Teaches

Pete
Paul
Pat
Phil

Sam
Sara
Saul
Sue

CS1   CS2
CS3   CS4
CS5   CS6
CS7   CS8

Teaches

TAs

Advises

Professor

Student

Course

‘Lifts’
Trace paths &
convert paths to   
first-order clauses

Learning via Hypergraph Lifting                 
[Kok & Domingos, ICML’09]
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Clause Creation
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Clause Creation

1 + 11 + 1

Advises(p, s) and Teaches(p, c) and TAs(s, c)

Advises(p, s) V Teaches(p, c)  V notTAs(s, c)

…

Advises(p, s) V not Teaches(p, c)  V notTAs(s, c)



Outline (Higher Level)

• State-of-the-art Structure Learning
• Effective Learning 
• Advice Taking 
• Actively Seeking Advice



Functional Gradient Boosting
Key Insight: Learn multiple weak models rather than a single 

complex model 
– First explored in the context of StaRAI by Kersting & Driessens

Data

Predictions

- Gradients=Current Model

+
+

Induce

Iterate

Final Model = + + + +…

ψm

Friedman et al 2001, Dietterich et al. 2004, Kersting & Driessens 08, Natarajan et al. MLJ 2012, Springer Brief ‘15



J. Neville and D. Jensen ’07, 
D. Heckerman et al. ‘00

satisfaction(S)

course(S,C,Q)
grade(S,C,G)

Relational Dependency Network
• Cyclic directed graphs
• Approximated as product of conditional distributions

advisedBy(S, P) paper(S, P)



• Probability of an example 

• Functional gradient
• Maximize

• Gradient of log-likelihood w.r.t ψ

• Sum all gradients to get final ψ

Functional Gradients for RDNs
x Δ

target(x1) 0.7

target(x2) -0.2

target(x3) -0.9

p(X)

q(X,Y)

W1 W2

W3

∃", $ " = &

∄(, ) ", (
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Markov Logic Networks
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Learning MLNs

• Normalization term sums over all world states

• Learning approaches maximize the pseudo-
loglikelihood

÷
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ö
ç
è

æ
= å

i
ii currInstnw

Z
currInstP )( exp

1
)(

Weight of formula i Number of true groundings of 
formula i in current Instance

Key Insight: View MLNs as sets of RDNs  



• Maximize

• Probability of xi

• ᴪ(x)

• Maximize

• Probability of xi

• ᴪ(x)

Functional gradient for MLNs
RDN MLN

Khot et al, ‘11

Model  defined as a product 
of conditional distributions

Learning optimizes a product 
of conditional distributions

Each conditional distribution 
can be learned independently

Each conditional distribution 
not learned independently 

Regression tree uses 
aggregators (e.g. Exists)

Regression tree scales output 
by the number of groundings 

(Shavlik & Natarajan ‘09)



MLN from Trees

p(X)

q(X,Y)

W1 W2

W3

n[p(X)] > 0
n[p(X)] = 0

n[q(X,Y)] > 0 n[q(X,Y)] = 0

Learning Clauses

• Same as squared error for trees

• Force weight on false branches (W
3  ,

W
2
)

to be 0

• Hence no existential vars needed

Similar algorithm for learning 

Relational Logistic Regression
(Ramanan et al., KR 18 - to appear)





RFGB-EM
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Relational RL (under review)

Relational Value Functions
Under review 

• Function Approximators in 
Relational Domains

• Fitted Q-iteration

• Huber loss functionRelational Imitation Learning
(Natarajan et al. 2011)

Learning Relational Policies



What can be learned?

Relational Dependency 
network

Markov Logic network

Learning with Hidden data

Imitation
Learning

Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016)

Transfer
Learning

Relational CTBN



What can be learned?

Multinomial Exponential

Poisson

Gaussian

Dirichlet

Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016), Hadiji et al (2015), Yang et al (2017)



Algo Likelihood AUC-ROC AUC-PR Time
Boosting 0.810 0.961 0.930 9s

RPT 0.805 0.894 0.863 1s
MLN 0.730 0.535 0.621 93 hrs

Predicting the 
advisor for a 

student

Movie 
Recommendation

Citation Analysis Discovering Relations Learning from
Demonstrations

Scale of Learning Structure
- 10 G facts describing the recommendations
- 115k drug-disease interactions
- 11 M facts on NLP tasks

Impressive Results on Standard Domains

Natarajan et al. MLJ’12, Khot et al. ICDM ’11, Natarajan et al. IJCAI ’11, Natarajan et al. IAAI ’13
Weiss et al. IAAI ’12 AI Magazine ‘12, Natarajan et al. IJMLC ’13, Khot et al. MLJ’ 14

Information Extraction



Several Real Applications

Cardiovascular Study EHR Alzheimer’s

Handwriting 
Recognition

Image Segmentation/
Classification

Information 
Extraction

Weiss et al (2012,2013). Natarajan et al (2013,2012, 2014, 2015), Shivram et al (2014), Picado et al (2014) 
Soni et al (2016), Viswanathan et al (2016), Odom et al (2014,2015a, 2015b), Yang et al (KBS 2017)

Recommendation 
System

Predicting rare diseases/PPD from 
survey/sensor data



Scaling Boosting

Efficient counting using Databases

1.Encode the data into relational database
2.Reformulate counting as join queries
3.Reuse the join query results for different 

clauses with common predicates and in 
subsequent induction steps

4.Use modes to restrict the search process
Malec et al. ’16 (Best Student Paper)



DB Boost Results
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Approximate Counting via Graph DB

Compute summary statistics of the motifs on the resulting hypergraph
Approximate the exact counts with these statistics 

(Das et al., under review)

Related work by Das ‘16, Venugopal et al, ’15 (MLNs)  



Try it yourself

• https://starling.utdallas.edu/software/boostsrl/

Tutorial

• https://starling.utdallas.edu/software/boostsrl/wiki/

https://starling.utdallas.edu/software/boostsrl/
https://starling.utdallas.edu/software/boostsrl/wiki/




Outline

• State-of-the-art Structure Learning
• Effective Learning 
• Advice Taking in SRL
• Actively Seeking Advice



• SRL uses FOL as underlying representation
– Used for designing classical AI systems

• SRL research is primarily data-driven or fully 
expert-driven

“Mere labeler”

RFGB
Structure Learning methods

Human involvement in SRL 

All knowing Oracle

Pure reasoning

Examples Full Model

Weight
Learning
EM

Humans can do more (or less)!

Active Learning/
Feature selection

Advice
giving



Advice for SRL

Quantity of Training Data

Q
ua

nt
ity

 o
f E

xp
er

t K
no

w
le

dg
e Expert Systems

Standard Machine Learning
SVMs
ANNs
FGB

Knowledge-Based Learning
KBSVMs
KBANNs
KBIRL

Leverage years of experience
Intuitive method to convey knowledge

Properly leverage high-quality data
Requires little human intervention

Combine knowledge and data
Correct systematic noise
Build robust models

Fung et al. 2002, Towell and Shavlik 1994, Kunapuli et al. 2013

Goal: Expand Knowledge-Based Systems to SRL



Types of Advice

Monotonicity

Precision/Recall Tradeoff
A

B

As feature x ↑,
P(positive) ↑

Yang & Natarajan ECML ‘13, Yang et al. ICDM ‘14

Fung et al. 2002, Towell and Shavlik 1994, Kunapuli et al. 2013



Types of Advice

Preference Knowledge

A
B

Powerful framework that can incorporate 
different kinds of advice

Odom et al. AAAI ‘15



Types of Advice

Training 
Phase

Deployment/
Test

Privileged Information



What is this Advice?

Slow down 
for red 
lights.

Imitation Learning

Relational Classification

Transfer Learning

Membranes 
have many 
neighbors.

Drive more 
slowly when 

turning.

r_color(img,reg,4),
r_per(img,reg,1)

r_nb(img,reg,4)

approach(car,light,state)
slight(light,R,state)

speed(car,H,state)

loc(car,turn,state)
road(turn,Tight,state)



Advice for RFGB: Update Gradients

Idea: Incorporate advice into the gradients

Data

Predictions

- Gradients= Induce

Iterate

Final Model = + + + +…

ψm

Advice Effect

+

(1-α)

α

Odom et al. AAAI ‘15, Yang et al. ICDM ‘14



!"" #, % = '
()∈#

log
exp(2 34; 64 )

∑9: exp(2 34; 6; + =>?@(64, 6;, 2)

Label	Preferences:
=>?@ 34, 2 = −M×2 34 ×[PQ 34 − PR 34 ]

Gradients:

Learning Framework

# Advice ↑T(UVWXU4) # Advice ↓T(UVWXU4)

Δ 34 = Z 64 = 1 − T 64 = 1;\ + M[PQ 34 − PR 34 ]



max
$,&',()

− + , + ./0
12,

3

41 + .5 0
6789

:6

s.t.
>5∗
1 − >5

1 @ − .>5∗
A,+ ≥ 41, ∀D ∈ F\D∗, H = 1, . . . , K

>5∗
1 − >5

1 @ − .>5∗
A,+ ≥ :6 + L6, ∀D ∈ MNOP6, D

Q ∈ FRSHT6, U ∈ VW
:6 ≥ 0, ∀U ∈ VW
N1 ≤ NZ5[, ∀H = 1,… , K

trajectory constraints

(Aside) Linear Program Formulation
for Sequential Decision-Making

advice constraintsweights on advice/trajectories

Kunapuli et al. (2013)



Sample Results 
Relational Classification

Propositional 68.6%
Relational 69.3%

Adv-Initial (Prop) 72.2%
Adv-Initial (Rel) 91.5%
Adv-Relational 99.1%

Model Accuracy



Sample Results
Cost-sensitive Learning



Advice for Adverse Drug Events NLP
• “If a drug and an effect are present in a proposed ADE and a sentence 

contains both the drug and effect, the ADE is true”
• “If a drug and an effect are present in a proposed ADE, and a sentence 

contains both the drug and effect, and the sentence contains the 
pattern ‘effect after drug’, the ADE is true”

• “If a drug and an effect are present in a proposed ADE, and a sentence 
contains both the drug and effect, and the sentence contains the 
pattern ‘drug-induced effect’, the ADE is true” 



Experiments: Adverse Drug Events
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Outline

• State-of-the-art Structure Learning
• Effective Learning 
• Advice Taking in SRL
• Actively Seeking Advice



Knowledge-Based Learning

Fung et al. 2002



Knowledge-Based Learning

What advice should the expert give?



passive learning
classical learning setup without any human-in-the-loop 
guidance during learning

active learning
learner can query the human-in-the-loop to elicit information
about individual examples, their labels, features 

advice-based learning
human-in-the-loop gives general advice including label
& feature preferences, constraints, domain knowledge, rules 

active guidance elicitation for learning
human-in-the-loop gives advice about the task including  
preferences, constraints, domain knowledge and rules 

!" ≈ $(log !))

!+, ≈ $(log !))

!"- ≈ $(log log !))

!)

Active vs Passive Learning



Active Learning

• Learn initial model from training data - !"

• Generate prediction over data - #$%('"|)")

• Calculate uncertainty – +(#$% '" )")

• Select example(s) -argmax
1%

+(#$% '" )")



• Learn initial model from training data - !"

• Generate prediction over data - #$%('"|)")

• Calculate uncertainty – +(#$% '" )")

• Select example(s) -argmax
1%

+(#$% '" )")

Relational Active Advice Seeking
Relational Model

Select advice clause with the highest uncertainty

Odom & Natarajan (2016)



Relational Query Generation

Predict which states vote democrat?



Relational Query Generation

Predict which states vote democrat?



Relational Query Generation

Queries:
!"#$%& ',)"*+ , ,%- ', . , /01+.(., 3"4)
PrimaryIndustry(x, Manufacturing)



Relational Active Advice Seeking

• Query – Conjunction of literals
– Defines set of examples
– Learned by fitting regression trees on current 

uncertainty 

• Expert Response – Selects Preferred/Avoided
labels 0.8 0.2

0.6

Query: P ^ Q

P

Q



(Aside) Sequential Decision-Making
Goal:	Select	states	(-.)	according	to	their	cluster	quality	(f)	and	the	total	
uncertainty	of	all	states	(: = -.⋃-=)

arg max
-@

A -. [CD -. + CD -= ]

We simplify this intractable global optimization problem by:
1. Clustering the states to define a finite set of queries
2. Considering an uniform cluster quality when selecting a query

WumpusWorldSailingTraffic Routing Drone Flying

Odom & Natarajan (2016)



(Aside) Preference Guided Planning

• Guides search progressively 

• n-step Roll-out

• Evaluate each option m" ∶
$ %& 'ℎ)*) %& ∈ ,-

• $ %& = /012 345
, 745

, 845

(:;<=)

• $ ,- → @ ,- (induce distribution)

• Uncertainty A ,- =
−∑4∈DE F % log( J

: 4
)

• Query human based on uncertainty in decision

HMCL ‘17 Workshop at AAAI, AAMAS 18, KBS (under review)

Joint work with Jana Doppa, Rakibul Islam and Dan Roth



(Aside) HTN Planning Results

10 Domains ; Baselines : (1) Pre-Encoded/Upfront Preferences, (2) Random Queries & (3) No Preferences 

AAMAS 2018

More Problems solved Better solutions obtained



(Aside) Interfaces for Communication
CwC – Joint work with Dan Roth, Jana Doppa, Julia Hockenmaier



ER Diagrams for Preference Specification? 
(KCAP 2017)



Outline

• Effective Learning 
• Advice Taking in SRL
• Actively Seeking Advice
• Wrap-Up



Precision Health Tasks

Cardiovascular events/procedures from EHR/Clinical Study 
(IAAI 12, IAAI13, AI Magazine 12, AIME 15a, AAAI 15, AAAI 16, 
AIME 15b, AIME 17a, AIME 17b)

Alzheimer’s /diabetes prediction from 
FMRI (IJMLC 13, Neuroradiology, 
ICMLA 12Jour of Neurotrauma 15)

Predicting rare diseases/PPD from 
survey data (CHASE 16, CHASE 17)

Adverse Drug events from 
EHR/Med abstracts AAAI 12, 
AIME 15, EMNLP (under 
preparation)

Parkinsons’ prediction from 
Study data (AIME 17)



Kristian Kersting - Declarative Data Science Engineering

• AI in the wild is more than a single table - Graphs, 
different data types, relational DBs, … are central to HAAI

• Symmetry/Relation aware AI is essential
• Sequential models and dynamic models that do not make 

simplistic assumptions are necessary
• Human is an ally in learning and AI system needs to 

efficiently use human knowledge and input
• Deployment: medicine, social science, traffic, journalism, 

… and the Data Science Genome: Machines read and 
understand data science publications and help the user 
with their problem at hand

Conclusions



Next Steps
• Web-scale StaRAI

• More applications
– NELL, relation extraction, more EHRs, imaging data

• Learning from Multiple Experts

• Efficient Inference for CTBNs

• “Truly” Hybrid Models

• Combine with efficient inference techniques
– Approximate counting & Approximate inference

• Solve a *dream* problem
– Relational POMDPs


