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Human Allied Al

Can we build systems that can seamlessly interact with, learn
from and collaborate with human expert?
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Our Prior Work towards HAAI

. Tractable modeling of Multi-modal data
Efficient Reasoning in large domains

Faithful Temporal Modeling

Effective Sequential decision-making

Scalable learning with complex relational data
Explicit modeling of noise and uncertainty



Bottom line:
Take your data spreadsheet ...

Features

Objects




Graph Mining

... and apply
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Heterogenous data networks abound

[Lu, Krishna, Bernstein, Fei-Fei ,Visual Relationship Detection” CVPR 2016]

dVI SUA LG E N O M E About Download DataAnalysis Paper Explore

Visual Genome is a dataset, a
knowledge base, an ongoing effort to
connect structured image concepts to
language.

Explore our data: | Q
throwing frisbee, helping, angry

108,077 Images

5.4 Million Region Descriptions

1.7 Million Visual Question Answers

3.8 Million Object Instances

2.8 Million Attributes

2.3 Million Relationships

Everything Mapped to Wordnet Synsets

Read our paper.

Most data in the world is stored in
relational databases



Mining Electronic Health Records is an opportunity to save our lifes and a lot of money.

Unfortunately, they are noisy and interconnecy\

%PatientlD e ek %PatientID Date |Physician Symptoms | Diagnosis
= ©
‘é Pl 3/22/63 E Pl |/1/01| Smith | palpitations hypoglyce ic
g < Pl 2/1/03| Jones | fever,aches | influenza
oo

Patie mPatientID SNPI
é Pl |8od glucose E P AA | AB BB
sl Pl 1/9/01| blood glucose & P2 AB AA
§ PatientID | Date Prescribed| Date Filled | Physician edicatiolyf| Dose| Duration
=
§ Pl 5/17/98 5/18/98 Jones prilosec |0mg | 3 months
v
o

Actually, most data in the world stored in
relational databases



De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation.

Morgan and Claypool Publishers, ISBN: 9781627058414, 2016. Statistical Relational

Artificial Intelligence
Logic, Probability,

Key Observation

Two trends that drive modern data science
1. Race to deeply understand data

2. Datain alarge number of formats

Uncertaint
We need a crossover of B

Machine Learning

and Probabilistic/ Statistical | patavases
Databases -

Data
Mining

[Getoor, Taskar MIT Press ‘07; De Raedt, Frasconi, Kersting, Muggleton, LNCS’08; Domingos, Lowd Morgan&Claypool ‘09; Natarajan
Kersting, Khot, Shavlik Springer Brief’15; Russell CACM 58(7): 88-97 '15]



Al and ML: State-of-the-Art

Learning
Decision trees, Optimization, SVMs, ...
Logic
Resolution, WalkSat, Prolog, description logics, ...

Probability

Bayesian networks, Markov networks, Gaussian Processes...

Logic + Learning

Inductive Logic Programming (ILP)

Learning + Probability

EM, Dynamic Programming, Active Learning, ...

Logic + Probability

Nillson, Halpern, Bacchus, KBMC, ICL, ...



Classical Machine'
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Example - Relational Probability Trees

To predict heartAttack(Person)

male(Person)

chol(Person,Age,Level), Age>40,Level>200

bmi(Person,W,”55”), W>30 @

Father (F,Person),diabetes(F)




Outline

State-of-the-art Structure Learning
Effective Learning

Advice Taking

Actively Seeking Advice



Learning

Parameter Learning — Where do the numbers come
from

Structure Learning — neither logic program nor
models are fixed

Evidence

— Parital assignments of values to variables {burglary = false,
earthquake = true, alarm = ?, johncalls = ?, marycalls =
true}



Up next inside Learning .w

Parameter learning — graphical models
Parameter learning — StaR Al models

Structure learning — logical models & graphical
models

Structure learning — StaRAI models



Maximum Likelihood Estimation

 MLE is the fraction of positive counts over
total counts

* Example: Bayes net parameters — estimate
each CPD using MLE

e For each P(X=x]|Pa(X) =y), count the number
of examples of x and y
N(X=x,Pa(X)=1y)
N(Pa(X)=y)

P X=xlPa(X)=y)=



EM ldea

e |f , ML parameter estimation is easy:
simple counting (1 iteration)

 But what if there are missing values, i.e., we are facing
incomplete data?

1. Complete data (Imputation)
— most probable?, average?, ... value
2. Count



EM Idea: complete the data

1 (8>
0A=true — 9 @_’.

[ 1
B=true|A=true — 9

incomplete data

Bthrue|A=false - % A B
complete tre | true
true | ?
P(B = true|A = true) = 0.5 false | true
P(B = true|A = false) = 0.5 true | false
false | 2
complete dat‘a/xpected counts
Al B ] N iterate
true | true | 1.5 _ 1.5+1.5 _
true | false | 1.5 OA=true = l-5+1'5+1-l5g0'5 = 0.6
false | true | 1.5 08=true|A=true = l.S-EI_,S = 0.5
- - S -0 —
false | false | 0.5 MaAXiMizZze 98=true|A=false — 1.540.5 0.75




EM Idea: complete the data

O—CED

incomplete data

9A—truo = 0.6
eB—truo A=true = 0.0 A B
BB—truo A=false — 0.875 com plEte true | true
true ?
false | true
P(B = true|A = true) = 0.5 true | false
P(B = true|A = false) = 0.875 e | 2

complete dat‘a;xpected counts

iterate
A B N '

— 1-:)"‘1.5 —_ 1
true |true | 1.5 9“‘—““0 T 1.5+1.5+1.875+0.125 0.6
0 - === =05
true | false | 1.5 B=true/A=true 1.5+11.g>_“_ .
— Ne XS —_— «
false | true |1.875 O B=true| A=false = 1.875+0.125 0.9375
false | false | 0.125 mMaximize




* Parameter learning — StaR Al models



Relational Parameter Estimation

Background

m(ann,dorothy),

f(brian,dorothy),
ily,fred),

Model(1)
pc(brian)=b,
bt(ann)=a.
bt Model(2)
bt bt(cecily)=ab,

| bt(henry)=a,
bt(fred)=?, Model(3)
bt(kim)=a,  pc(rex)=b,

bt(bob)=b  bt(doro)=a,
bt(brian)=?

Father

R =a

Person . _ Person

_ Person




Relational Parameter Estimation
Model(1) myx ’ " ’

po(brian)=b, g ian, dorothy),
bt(ann)=a. S
pt( Model(2 ily,fred), ‘
bt(ceciy)=ab, '
bt( bob)
bt(henry)=a, ’
bt(fred)=?, = Model(3
bt(kim)=a, = pc(rex)=b, |
bt(bob)=b  bt(doro)=a,

bt(brian)="?

Mother

@
dPI> PO

e~

Person Person

-
-
o

o> o

Parameter tying



So, apply ,,standard” EM

Background

Model(1) m(ann,dorothy),
elfrtan=s; f(brian,dorothy),
Logic Program L . . Panne. T ivred)
pt( Model(2)
o iterate until convergence T
- e bihenry)=a,
g I ] bt(fred)=?, Model(3)
o O EXpeCtatlon bt(kim)=a,  pc(rex)=b,
. bt(bob)=b  bt(doro)=a,
Person — bt(brian)=?
o> O
&
Initial Parameters
2 Inference
~ Current
- Model Expected counts of a clause
(M,qk) ?

E E P( head(Gl), body(Gl) | DC)

Ground Instance DataCase DC

Gl
E 2 P( head(Gl), body(Gl) | DC)

glround Instance DataCase DC MaXi mization
Update parameters (ML, MAP)
E 2 P( body(Gl) | DC)

Ground Instance DataCase DC
Gl




Solution 1: Aggregators

Deterministic ‘ \

Stochastic

Population

Problem: Does not take into account the interaction between Rain and Temp



Solution 2: Combining Rules

- -~ . 4 ~
. l S~ - —_——- ] i

Population
e Top 3 distributions share parameters

e The 3 distributions are combined into one final distribution

e Gradient-descent and EM Methods exist



MLN Weight Learning

« Parameter tying: Groundings of same clause

% log P, (x) 4 m, () HE, [m )]

No. of times clause i is true in data \

Expected no. times clause i is true according to MLN

* |tis #P-complete to count the number of true groundings

* Generative learning: Pseudo-likelihood
 Discriminative learning: Cond. likelihood

Slide based on Domingos’ talk



Generative Learning

* Function to optimize:  (w) = wn,(x)-logZ
/ = n.(x'
- Gradient: Zx:exp(Ziwln’(x )

aiwjf (W) =n,(x) _%;exp(ziwi”i(x'))”f(x')
_ nj(x) — ZP()C')VI].(X')

= nj(x)_E[nj(x)]
\ ) \ )
Y |

Counts in training data Weighted sum over all possible worlds
No evidence, just sets of constants
Very hard to approximate

Slide based on Domingos’ talk



Pseudo-likelihood

PL(x)=] | P(X, = x, | MB(x,))
log PL(x) =) _log P(X, = x, | MB(x,))
[

P(x)
P(x;y,—0) + P(Xpy,-p7)
1/ Z exp(Zwn.(x))

P(X,=x,|MB(x,)) =

) 1/Z eXp(ZWini(x[X,:O])) T I/Zexp(zwini(x[)(l=l]))
9,

log PL(x) = Zn (x)— P(X,; = 0| MB(X))) n(x;x )
/ —P(X, =1|{MB(X,))n,(xx )

=D 1, ()= Eln,(x )]

Slide based on Domingos’ talk



Pseudo-likelihood

PL(x) :HP(XI =X, | MB(x,))

(x[X,zl]))

WilOgPL(X) = an(x) = P(X, =0[MB(X))) n;(X;x,—))

: ’ ~ P(X, = 1| MB(X)) (x5 )
— an (x) o Ex,’ [nj (x[Xlzx;])]

Slide based on Domingos’ talk



e Structure learning — logical models & graphical
models



Probabilistic Graphical Models
S

If data is complete:

To update score after local change,
only re-score (counting) families tha
changed

If data is incomplete:
To update score after local change
D reran parameter estimation algorltﬁm <P



StrUCtu ral EM [Friedman et al. 98]

Reiterate

Computation Score &

Expected Counts Parameterize
EN(X1)
(@] EN(Xz)
EN(X3)
! EN(H, X1, X1, X3)
ﬁ EN(YI, H)
EN(Y>, H) - '
EN(Y3, H)
_|_
/_\
u
. . EN(X2X1)
Training ENCH, X1, X5)
EN(Y1, X2)
Data EN(Y;, Ve H)
v




Inductive Logic Programming =
Machine Learning + Logic Programming

The Problem Specification
[Muggleton, De Raedt JLP96]

* Given:
— Examples: first-order atomic formulas (atoms), each
labeled positive or negative.

— Background knowledge: definite clause (if-then rules)
theory.

— Language bias: constraints on the form of interesting new
rules (clauses).



ILP Specification (Continued)

e Find:

— A hypothesis h that meets the language constraints and
that, when conjoined with B, implies (lets us prove) all of
the positive examples but none of the negative examples.

 To handle real-world issues such as noise, we often
relax the requirements, so that h need only entail

significantly more positive examples than negative
examples.



A Common Approach

* Use a greedy covering algorithm.

— Repeat while some positive examples remain uncovered

(not entailed):

* Find a good clause (one that covers as many positive examples as
possible but no/few negatives).

* Add that clause to the current theory, and remove the positive
examples that it covers.

* |LP algorithms use this approach but vary in their
method for finding a good clause.



e Structure learning — StaRAI models



Vanilla SRL Approach

[ mutagenic(X) :- atom(X,A,n),charge(A,0.82)

[mutagenic(X) - atom(X,A,c),bond(A,B) ] =0.882

* Traverses the hypotheses space a la ILP

* Replaces ILP’s 0-1 covers relation by a “smooth”,
probabilistic one [0,1]
cover(e, H,B) = P(e|H, B)
cover(F,H,B) = HeeE cover(e, H, B)



Structure learning methods for MLNs

Top-down approach:
— GSL[Kok & Domingos, 2005], DSL[Biba et al., 2008]
— Start from unit clauses and search for new clauses

Bottom-up approach:

— BUSL [Mihalkova & Mooney, 2007], Hypergraph Lifting [Kok & Domingos, 2009],
Structural Motifs [Kok & Domingos , 2010]

— Use data to generate candidate clauses
Max-Margin Approach:

— Discriminative learning [Huynh & Mooney, 2008]

— Effectively learns horn clauses

— Uses regularization to force parameters to zero
— Later extended to online setting

42



Learning via Hypergraph Lifting

[Kok & Domingos, ICML'09]

~

Advises Teaches \ Advises

Pete | Sam Pete | CS1

Pete | Saul Pete | CS2

Paul | Sara Paul | CS2

- . . O S S O . .y

TAs

Sam CS1

Sam CS2

Sara CS1 )
,

* Relational DB can be viewed as hypergraph

— Nodes * Constants
— Hyperedges “ True ground atoms



Learning via Hypergraph Lifting

[Kok & Domingos, ICML'09]

S
\
/
!
S
3
(7

Advises Teaches \ Advises
Pete | Sam Pete | CS1
Pete | Saul Pete | CS2
Paul | Sara Paul | CS2

TAs

- . . O S S O . .y

Sam CS1
Sam CS2
Sara CS1
\ /
o ,

Clustering using “2"4”-order
MLNs

— Jointly clusters nodes into
higher-level conceptsAdvises
— Clusters hyperedges

‘Lifts’

Studen




- - O O O . . O . . e .

Learning via Hypergraph Lifting

,' Advises Teaches
I | Pete | Sam Pete | CS1
'l Pete | Saul || Pete | CS2
: Paul | Sara Paul | CS2
| e e e
I TAs

: Sam | CS1

I Sam | CS2

1 Sara | CS1

\

o - o o o S O O S S S o

Trace paths &

convert paths to
first-order clauses

Advises

Studen

[Kok & Domingos, ICML'09]

Advises

‘Lifts’

45



FindPaths

CS1 CS2
CS3 CS4

CS5 CS6
CS7 CS8

Paths Found

/ AdVvises( Q)

Advises(C_ Q) ),

Teaches ), O
Advises( ), Q)
Teaches () Q)
TAs(Q, O )

~

/




Clause Creation

Advises(
and Teaches( y
and
TAs(

CS1 CS2
CS3 CS54
CS5 CS6
CS7 CS8

CS1 CS2
CS3 CS4
CS5 CS6
CS7 CS8




Clause Creation

Advises( ;S

and Teaches(

and
TAs( s



Clause Creation

Advises(p, s) and Teaches(, c) and TAs(s, c)
Advises(p, s) V not Teaches(p, c) V notTAs(s, c)
Advises(p, s) V Teaches(p, c) V notTAs(s, c)



Outline (Higher Level)

State-of-the-art Structure Learning
Effective Learning

Advice Taking

Actively Seeking Advice



Functional Gradient Boosting

Key Insight: Learn multiple weak models rather than a single
complex model

— First explored in the context of StaRAIl by Kersting & Driessens

— b
A
i
Current Model - = |/§i l\
=
~— lterate

<+

Friedman et al 2001, Dietterich et al. 2004, Kersting & Driessens 08, Natarajan et al. MLJ 2012, Springer Brief ‘15




Relational Dependency Network

* Cyclic directed graphs
* Approximated as product of conditional distributions

grade(S,C,D
course(5,C,Q) >

advisedBy(S, D<——<paper(s, P)>

=\satisfactionb<

J. Neville and D. Jensen '07,
D. Heckerman et al. ‘00




target(xl) 0.7
target(x2) -0.2
target(x3) -0.9

Functional Gradients for RDNs

* Probability of an example
e¥(zi;Pa(zq))

ew(wi;Pa(xi)) +1

P(x; = true|Pa(z;)) =

* Functional gradient

* Maximize

LL(X=x) = Z log P(x;|Pa(z;))
r; EX
* Gradient of log-likelihood w.r.t Y W, W,
Ax;) = Olog P(X = x) = I(z; = true; Pa(z;)) — P(x; = true; Pa(z;))

— O0Y(z;; Pa(zy))
e Sum all gradients to get final Y

Vm =1%o + A1+ ...+ Apy



Markov Logic Networks

Richardson & Domingos ‘05

 Weighted logic

1.1

Vx,y, p advisor(x,y), paper(x, p) = paper(y, p)

advisor(A,A)

1
P(currinst) = Z exp [Z A (curr]nst)j

I

Weight of formula i Number of true groundings of
formula i in current instance

advisor(A,B)

paper(B, P) advisor(B,B)

advisor(B,A)




Learning MLNs

g

Pleurinst) = exy }_j

Weight of formula i

Number of true groundings of
formula i in current Instance

* Normalization term sums over all world states

PLL(X=x) = Y logP(x;|MB(x;))
xr; EX
e Learning approaches maximij nseudo-

logli

Key Insight: View MLNs as sets of RDNs




Functional gradient for MLNs

RDN

Model defined as a product
of conditional distributions

Each conditional distribution

can be learned independently

Regression tree uses
aggregators (e.g. Exists)

MLN

Learning optimizes a product
of conditional distributions

Each conditional distribution
not learned independently

Regression tree scales output
by the number of groundings

(Shavlik & Natarajan ‘09)
— ’I’Lj (.Cl?Z = 0; MB(:Ul))

Khot et al, ‘11



MLN from Trees

Learning Clauses

- Same as squared error for trees

* Force weight on false branches (w, w,)
tobe O

* Hence no existential vars needed

wy : p(X),q(X,Y) = target(X)

Similar algorithm for learning
wy : p(X),q(X,Y) — target(X) Relational Logistic Regression
(X),~(3Y,q(X,Y)) — target(X) (Ramanan et al., KR 18 - to appear)
ws @ p(X) — target(X)






E-Step

M-Step

gum—

\
Observed =

“—

>

Induce Tree
|

T trees

Hidden States ‘
Hidden — ~
_/ UK
Input Data

RFGB-EM

, Sample

\

A A

— X y

Regression Examples

Khot et al MLJ ‘15



* Function Approximators in

Relational RL (under review)

Relational Domains

e Fitted Q-iteration

Bellman error{avg)

[

Relational Imitation Learning

(Natarajan et al. 2011)

Learning Relational Policies

” Wumpus World

ol —— RRT

8 - Deep Network
6 - Least Squares
4

0 20 40 60 80
iterations

Bellman error(avg)

15.7

nctions

2.0 Blocks World

1.5 i)
1.

0.5

0.0

0% 50 100 150 200

iterations



What can be learned?

Paper
@lds(A.B)
Author e ° - /\
m -
X

/ @de(/@?&nﬂms(;ﬂ Smokes(B) Frlends( _/ Diabetes(X, T)
;:"gk __* Cancer('r_\)/ \/ Cance@
Ql_ends(B JA)
Relational Dependency Markov Logic network Relational CTBN
network
J
0 U] R & ¢ ¢ S — "
(1) (3) A A e VT
W (4) L5 T
@ ) A, Transfer
LIJ |mitati0n Learning

Learning

Learning with Hidden data
Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016)



What can be learned?

Natarajan et al (2010, 2011, 2012,2013 ) Khot et al (2011, 2013), Yang et al (2016), Hadiji et al (2015), Yang et al (2017)

g o™~
2z
2 £
g % o3 —
x
Multinomial Exponential
PO AR
0.25 / N — '
: )- -
0.2 \ ) I
; \ Gaussian g
0_15-E / \ 1
\
] N . 4
0.05: \
] S v

Dirichlet

Poisson




Impressive Results on Standard Domains @i\

Predicting the
advisor for a Boosting 0.810 0.961 0.930
student RPT 0.805 0.894 0.863 1s
MLN 0.730 0.535 0.621 93 hrs
e Ly
Movie Citation Analysis Discovering Relations ~ Learning from
Recommendation Demonstrations
b Tot . ecvences Scale of Learning Structure

”\{\r/ﬁ\yi-
The second sign of the Zodiac is

10 G facts describing the recommendations

mentioning t

115k drug-disease interactions
11 M facts on NLP tasks

Information Extraction

Natarajan et al. MLJ’12, Khot et al. ICDM 11, Natarajan et al. IJCAI “11, Natarajan et al. IAAl 13
Weiss et al. IAAI"12 Al Magazine ‘12, Natarajan et al. IMLC’13, Khot et al. ML)’ 14



Several Real Applications

CHRDA A CONPONNTS ALLTESRS Theme Questions Answers

Age Number entry
g 3 Gender’ Malke, Female, Other
~ 3% [ I Country of Reside: “Text entry
Machine Learning for Deoanpte Comey o s e g v P Dt et

Widowed, Single, Other}
{Full time, Part time, Retired, Student, Disabled, Not

Personalized Medicine:

Employment Employed for Pay)
Predicting Primary o R scho,cchicalikiecaion ool some
Myocardial Infarction e o i, e
from Electronic DT v T o o T i | e
Health Records e e,

Jeremy C. Weiss, Sriraam Natarajan,

Peggy L. Peissig, Catherine A. McCarty, David Page

nosed?

How scvercly do your symptoms impact your lile?

5 point scak from No impact to Extreme impact

Technology
Use

How ofien do you use the intemet?

TSeveral fimes a day, About once a day, Several Gmes
a week, Every few weeks, Less often, Never}

Do you own any of the following &chnologics?
(Check all that apply)

{Desktop computer, Laptop computer, Cell phone, -
Reader, MP3 Player, Game console, Tablet}

On your cell phone, do you have any applications thal
help you track or manage your health?

{Yes, No, I dont have a cellphone }

Do you cver use your Il phone o Took up health or
medical i

(ch. No, I dont have a cellphone }

EHR Alzheimer’s

Predicting rare diseases/PPD from
survey/sensor data

1 oy — Unstructured Structured H ~
f(2)=ﬁf u(e "")—dw Izl <1 } Web Text Sequences - L D
9 L ign of the Zodiac

o [ 2y, 1afe)

Recommendation
System

Information
Extraction

Image Segmentation/
Classification

Handwriting
Recognition

Weiss et al (2012,2013). Natarajan et al (2013,2012, 2014, 2015), Shivram et al (2014), Picado et al (2014)
Soni et al (2016), Viswanathan et al (2016), Odom et al (2014,2015a, 2015b), Yang et al (KBS 2017)



Scaling Boosting

Efficient counting using Databases ik

1.Encode the data into relational database
2.Reformulate counting as join queries

3.Reuse the join query results for different
clauses with common predicates and in
subsequent induction steps

4.Use modes to restrict the search process

Malec et al. ’16 (Best Student Paper)
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Approximate Counting via Graph DB

(Das et al., under review)

Student Teaches(Amy, AI, Fai7),

. Teaches(Amy, ML, Fai7)

.°0. Teaches(Amy, AI, Spi8),

°',.$ Teaches(Amy, Opt, Sp18)
TA (s L) “%4  TA(Ben, AI, FaiT),

Te ourse =Y
*2  TA(Ena, ML, Fal7)

@/ \t@ 32 TA(Cam, AT, Sp18),
S o «®  TA(Deb, Opt, Spi8)

Teaches(p,c,t)

i AdvisedBy(Ben, Amy),
Profgssor o' AdvisedBy(Deb, Amy),
@A' AdvisedBy(Fei, Amy)
Compute summary statistics of the motifs on the resulting hypergraph
Approximate the exact counts with these statistics

(3

.
*e

1 . , 400 — = .
. Bl VACH
@) T 5 300 | BFACT
8 § [ IMLN-Boost
L-) 0.5} @ 200
D (0]
< € 100
0 I e ,_|
NELL-Sports UWCSE** NELL-Sports UWCSE**

Related work by Das ‘16, Venugopal et al, 15 (MLNs)



Try it yourself

* https://starling.utdallas.edu/software/boostsrl/

Tutorial

* https://starling.utdallas.edu/software/boostsrl/wiki/



https://starling.utdallas.edu/software/boostsrl/
https://starling.utdallas.edu/software/boostsrl/wiki/

[ BoostSRL: “Boosting for = x

< C' (0 @ Secure | https://starling.utdallas.edu/software/boostsrl/ %

As with the standard gradient-boosting approach, our approach turns the model-learning problem to learning a
sequence of regression models. The key difference to the standard approaches is that we learn relational regression
models (i.e. regression models that operate on relational data). We assume the data to be in predicate-logic format
and the output are essentially first-order regression trees where the inner nodes contain conjunctions of logical
predicates.

Latest Release License Wiki

Getting Started
Prerequisites:

e Java (tested with openjdk 1.8.0_144)

Installation:

e Download stable jar file.

e Download stable source with git.

git clone -b master https://github.com/boost-starai/BoostSRL.git

e Nightly builds with git.

git clone -b development https://github.com/boost-starai/BoostSRL.git

Basic Usage

[hayesall@hawk Datasets]$ 1s -R Cora/
Cora/:

Cora/test:

Cora/train:

[hayesall@hawk Datasets]$ .
BoostSRL assumes that data are contained in files with data structured in predicate-logic format.

Positive Examples:

father (harrypotter, jamespotter).

father(ginnyweasley, arthurweasley).

father(ronweasley, arthurweasley).

Negative Examples:




Outline

State-of-the-art Structure Learning
Effective Learning

Advice Taking in SRL
Actively Seeking Advice



Humans can do more (or less)! B

* SRL uses FOL as underlying representation

— Used for designing classical Al systems

* SRL research is primarily data-driven or fully
expert-driven

Human involvement in SRL

Examples Full Model

o ”. . Y H
Mere Iabelﬁ&we Learning/ Advice All knowing Oracle

Weight
Feature selection vin L g. .
RFGB glving €arning  pyre reasoning

Structure Learning methods EM



Advice for SRL

Goal: Expand Knowledge-Based Systems to SRL

>

Expert Systems

Leverage years of experience

Intuitive method to convey knowledge

Knowledge-Based Learning
KBSVMs

KBANNS

KBIRL

Properly leverage high-quality data

Requires little human intervention

Quantity of Expert Knowledge

Combine knowledge and data
Correct systematic noise
Build robust models

Standard Machine Learning
SVMs

ANNs
FGB

Quantity of Training Data

Fung et al. 2002, Towell and Shavlik 1994, Kunapuli et al. 2013



Fung et al. 2002, Towell and Shavlik 1994, Kunapuli et al. 2013

Types of Advice

Monotonicity | As feature x 1,
P(positive) T

Yang & Natarajan ECML ‘13, Yang et al. ICDM ‘14



Types of Advice

Preference Knowledge ° ..

Powerful framework that can incorporate
different kinds of advice

Odom et al. AAAI ‘15




Types of Advice

Privileged Information

Wearable Sensors

Dashboard Date  Com

{ 4 (Question

Wearable ION Glasses

What s thetime to the nearest hour? (1 point) Activity Tracking A

1 z 55, 2nd a5k him o et reeat o Quantified Self
. . e ™ 2 St
(BTN Soetid St o /
I ra I I l I I lg fotow ntroges Winat s the yea? (1 por) ‘ Angel
St Rhoges iy = e
et e What is the name of the hospital o number of the residence whese the patient is situated” (1 point) - Acoustical
Comtrinfom? whoges canhepatet ecoguzstr prsons (e doctr, s, home e, (1 pot Optcal
o o Wrops ; . . Acceleration
What isyourdate o bih? day and month sufcient
Phase - =i Pat s your Gt of by and e sficen) 1 — icizbegi
i I whatyear d Word War 1 bega? (1 pi

Whatis your age? (1 poin)

ooctrsame | Dagoss

St s

P
et

Heart rate

Physical activity

= - 3 dates canbeused, with 2 prerencefor dtes sometme e ast =
pe - o rovems > Mame thepesent monatchicttaprime miistepresidet (1 o)
- e e e i Whin i o comeo i oty s o ot
o ~ . (Coun backwards fom 20 downto 1. 1 poit) : —

Kopescrgson sums Fitbit, secld

@idezo_ch

Dasboars Date - e Report: Foun

Deployment/ ‘ =
Test




FREE ADVICE
NEXT EXIT ¥

What is this Advice?

Relational Classification

loc(car,turn,state)
road(turn,Tight,state)

approach(car,light,state)
slight(light,R,state)

speed(car,H,state)

Membranes

Slow down haye many Drive more
for red neighbors. slowly when
lights. turning.

r_color(img,reg,4),
r_per(img,reg,1)

r_nb(img,reg,4)

Imitation Learning Transfer Learning




Advice for RFGB: Update Gradients

ldea: Incorporate advice into the gradients

WP
i
P | e B |
— +

Q Advice Effect

-

Iterate_

Final Model = /§i' it /<C

YN N E

Odom et al. AAAI 15, Yang et al. ICDM ‘14




Learning Framework

exp(@(x;;y:))

MLL(x,y) = z I
) X;EX ngy’ exp(p(x;;¥' ) + cost(yy, y', @)

Label Preferences:
cost(x;, @) = —AX@(x;)X[n:(x;) —me ()]

# Advice MNP (label)) # Advice J P(label;)

Gradients:
Ax;)) =1(y; =1) = P(y; = L;¢) + A[n:(x;) — np(;)]



(Aside) Linear Program Formulation
for Sequential Decision-Making

trajectory constraints

n
max —||r||; + ltZ Si 1+ 4q Z (j
rrfii(j i—1

J€Se

weights on advice/trajectories advice constraints

S.L

(PL. — PL)(I — AP,) r > &, Va € A\a,,i =1,...,n

(PL — PL)I —AP,) " 'r = {; + 6;,Va € Prefj,a’ € Avoid;,j € S,
¢ =20, Vj €S,

177 < g Vi=1,..,n

Kunapuli et al. (2013)



Sample Results
Relational Classification

Model Accuracy
Propositional 68.6%
Relational 69.3%

Adv-Initial (Prop) | 72.2%
Adv-Initial (Rel) 91.5%
Adv-Relational 99.1%




Sample Results
Cost-sensitive Learning

Imdb Webkb

LG | -

L8 e -

F5 Measure
F5 Measure

MLN No RFGB a=1 a=1 MLN No RFGB =1 «a=1
Boosting f=-8 o=-10 Boosting p=-8 a=-10



Advice for Adverse Drug Events NLP

“If a drug and an effect are present in a proposed ADE and a sentence
contains both the drug and effect, the ADE is true”

“If a drug and an effect are present in a proposed ADE, and a sentence
contains both the drug and effect, and the sentence contains the
pattern ‘effect after drug’, the ADE is true”

“If a drug and an effect are present in a proposed ADE, and a sentence
contains both the drug and effect, and the sentence contains the
pattern ‘drug-induced effect’, the ADE is true”



Experiments: Adverse Drug Events

Alchemy

MLN-Boost RDN-Boost Adv-RFGB

AUC-ROC

100

95 -
90 -
85 -
80 -
75 A
70 -
65 -
60 -
55 A
50 -

Alchemy MLN-Boost RDN-Boost Adv-RFGB
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Knowledge-Based Learning

Fung et al. 2002



Knowledge-Based Learnj

* &
::... What advice should the expert give?

* * *
*

*

L




Number of Labeled Examples

-—
o
N

—
o
(=2}

—
o
o~

Active vs Passive Learning

passive learning
classical learning setup without any human-in-the-loop
guidance during learning

active learning
learner can query the human-in-the-loop to elicit information
about individual examples, their labels, features

J advice-based learning
human-in-the-loop gives general advice including label
& feature preferences, constraints, domain knowledge, rules

active guidance elicitation for learning
Nyp = O(log Np) human-in-the-loop gives advice about the task including
references, constraints, domain knowledge and rules

\

N,g = O(loglog Np)

Guidance



Active Learning

¢ Learn initial model from training data - m;

* Generate prediction over data - By, (yi|x;)

* Calculate uncertainty — H (P, (v;1x;))

—~ Select example(s) -argmax H(Pmi(yi |;))

Xi



Relational Active Advice Seeking

Relational Model

* Learn initial model from trainir

* Generate prediction over data - By, (yi|x;)

* Calculate uncertainty — H (P, (v;1x;))

—~ Select-exampte(s) -arglax H(Py, (ilx;))

Select advice clause with the highest uncertainty

Odom & Natarajan (2016)



Relational Query Generation

Predict which states vote democrat?



Relational Query Generation

Predict which states vote democrat?



Relational Query Generation

Queries:
Region(x,West), Gov(x,y), Party(y, Dem)
Primarylndustry(x, Manufacturing)



Relational Active Advice Seeking

* Query— Conjunction of literals Query: P Q
— Defines set of examples

— Learned by fitting regression trees on current

uncertainty 0.6

* Expert Response — Selects Preferred/Avoided

labels 0.8 0.2
Active Advice-Seeking Advice-Based Learning
Y. |
[ Daa | o
S P e
B = T
| ~— l
Label Preferences ——
—sf. .
e Advice Effect
State Space vice Subspace

Iterate

Final Model /Q' b /<<\ ¥ /<>\\ 1



(Aside) Sequential Decision-Making

Goal: Select states (c¢;) according to their cluster quality (f) and the total
uncertainty of all states (§ = ¢;Ucy)

argcmaxf(|cj|)[Uc(Cj) + Uc(ci)]

J

We simplify this intractable global optimization problem by:

1. Clustering the states to define a finite set of queries

2. Considering an uniform cluster quality when selecting a query

HIGHWAY -—

ROAD 1 \ . |
L ot

= &)
ROAD2‘ .

-

e

| ()

e

—

It

—

N
w\',‘j{;(;s
s

I
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—>

Traffic Routing

Start

Sailing

Finish

P
P
P | P
WumpusWorld

Odom & Natarajan (2016)

Drone Flying



(Aside) Preference Guided Planning

HTN Planner

‘@ Taskt
Yes U(M-;), P(Mr)

m1

Query
Engine

Preference/ Suggestion

Plan Cost C,y,,, Goal Distance D,,, & Adherence Af’nrff

Guides search progressively
n-step Roll-out

Evaluate each option m;
S(m;) where m; € M,

S(my) = Func (Cyn,, Dy, , A% ")

S(M,) - P(M;) (induce distribution)

Uncertainty UM,) =
1
— Ymem, P(M) log(565

Query human based on uncertainty in decision

HMCL ‘17 Workshop at AAAI, AAMAS 18, KBS (under review)

Joint work with Jana Doppa, Rakibul Islam and Dan Roth



(Aside) HTN Planning Results

10 Domains ; Baselines : (1) Pre-Encoded/Upfront Preferences, (2) Random Queries & (3) No Preferences

AAMAS 2018
100 ~ T ~ T - T - T 1 T T T T T T T T T
o 801 &09r
2 o
S 1 I B
N got %0.8 r
g c
o
<@ —
-8 40 o 0.7r1
kS I PGPlannner o I PGPlannner
= Random Query
© | [ IRandom Query | & I |
°r 20 -Upfront Preferences x 0.6 -UpfrontPreferences
[ No Preferences [™INo Preferences
0 [T T AT DT 05 II\I‘II\I‘\I\IHI\I‘\
3 N\ & @ d
e\\ e@a c‘ﬂ‘% \% \e ‘00 \{_a \ &‘\ \ e} R \ \\{x ‘o c‘;“ (\o
o W Q e A 2 <<\
& 0 1 00 @ @ AT RGOV R

More Problems solved Better solutions obtained



(Aside) Interfaces for Communication
CwC — Joint work with Dan Roth, Jana Doppa, Julia Hockenmaier

Select Game: |122 Simulation Count: |0 ucTC: [0 Sample Count: |0 Start

K J Human and Planner Communication Panel

A

*

A

>

<Planner> Would you like to interact with the planner while
solving (y/n)?

<Human> y

<Planner> Would you like to give any suggestions now,
before we start?

<Human> no

<Planner>= Okay, let me see if | can find a move that works...
— <Planner> Currently, | am trying to move the eight of
diamonds blocking the three of diamonds.

I'm not sure what to do now. Please suggest a move.
<Human> finish the ace of diamonds

<Planner> The ace of diamonds was finished.

* oo
o

=

z

10

K
v

K

i L) T ) SO 0 B )
=3

* W A0 OO 1o
L]

L‘*Enm EEE
=)
L’mwlau.h

Plan cost: 4.0

free the king of diamonds
finish the ace of hearts
finish the ace of clubs




ER Diagrams for Preference Specification?
(KCAP 2017)

.-"'/.f \\"\ .f"f’—— ‘_"\‘\ x”‘f— \“\_\_1
( Salary ) ( GPA )( DepartmentB )
\\\"\_ _/< k\\‘-_ -<I/ h “-7 -/:f

/’f’—— ‘_"\‘\
' 3
( DepartmentA )— Professor 2 @ Student
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Precision Health Tasks

CARDIA EXAM COMPONE NTS—ALL YEARS
Schedule of components in the core study, substudies, and ancillary studies by CARDIA exam

VearExam' TowEra
1985 1587 1950 1392 199 2000 2005 2010 85 1987 1990 1% 1955 2000 20032010
0 2 5 7 10 152 25 T 1 5 7 w1 %
CORE STUDY
BLOOD PRESSURE Waight X X X X X X X X
Resting X X X X X X X X Sikinfolds X X X X X - —
S tanding - - - Chest Circumfarence - X X - - - Theene Quetions Anowers
Reactivity X ‘Waist Circumference X X X X X X X X Age Number entry
CHEMB TRES Hip Ciscumference X X X X X X Gender’ Malke, Female, Other
Genetic Thigh Circumference - - - X - - D Country of Residence Text entry
DNA Storage X X X X X X X - - Information Marital Status {Marmied, Living with a Partner, Divorced, Separated,
Storad Cells for Call Immortalization - - 0x S Widowed, Single, Other}
Flasma e . i = Employment TFull time, Part time, Retired, Student, Disabked, Not
e Srorororororo L P Fpye o P
A;‘:{‘ﬂ;‘m’ o o0 S B Tless than grade ¥, some high school, compleied
CBC X - - - - - - MEDICAL HISTORY high school, technical/trade/vocational school, some
Lp@) . - - Medical Histery X X X X X X x Education . cor y, some
Fibrincgen - X - - X - Iiticit Drug Use. X X X X X X X s duate education, po duate ed-
ApcE Phenotype - - X - - - Death Certificate - X X X X X X ucation}
S tored Plasma X X z X :: :: :: Mortal Events - - - X X X X Discasc name Text entry
C-Reactive Protein - - X X X X Safety Questionnaire - X - - - - - How y years has it been since you first staried | o,
Intedeviin§ - - X - Interiem Hospitalization - X X X X X 1 Disease ﬂwﬁm‘g’ symptoms? y Number entry
x .- - o - i:'dTan) years Bas 1 boen wnee you were Qg | o
:: .. X x ¥ x X ‘%““m-&::ﬁkl::;’e i oo x x %X % How severcly do your symptoms impact your life? ?Spmmalscak ﬁor: N(:\ ;’l:pacl o E:mn; |mp(]ac1
X - - X X X X X e - - - - X X - everal times a day, About once a day, Scveral Gmes
se Tolerance Test e T sTlc:;::m X X X X X X X X How ofien do you use the intemet? a week, Every few weeks, Less often, Never}
Storad Serum X X X X X X X X Aleohol X X X X X X X X Do you own any of the following chnologies? | [Deskiop computcr, Laptop computer, Cell phone, o
GCT ‘{ - 2 i % = WeightHistory x X - - - - - X (Check all that apply) Reader, MP3 Player, Game console, Tablet}
S arum Creatinine 3 X 3 3 Sociodemograghics X X X X X X X X 2 2 - = ——
Usic Acié X X X - FAMLY HISTORY QUESTIONNAIRE Technology g’:; (;:Lofgcihz:w ;lﬁ“,:r;n;m fications B3t 1 {es, No, I dont have a cellphone)
A FamilyBakey *o-oox * * Us Do you cver usc your cell phone to Took up health of | ;v o
Urinary Craatinine X X X X PHYSICAL ACTIVITY/FTINESS A c o {Yes, No, I dont have a cellphone }
Albyminuria X X X X 7Day: al Activity - R R R medical information? L -
ANTHROPOMETRY Physical Activity Questionmaire X X X X X X X X
Height X X X X X X X X Gradad Excercis X - - X - -
s Bascke Questionnaice - - X - X
yearof study indicates when original dats collsction occurred; sssay or coding may occur later Householé Chores - - - X X
Sedentary Behavior Quastionmire - - - - - - - X

Predicting rare diseases/PPD from

Cardiovascular events/procedures from EHR/Clinical Study survey data (CHASE 16, CHASE 17)

(IAAl 12, 1AAI13, Al Magazine 12, AIME 153, AAAI 15, AAAI 16,
AIME 15b, AIME 17a, AIME 17b)

PPMI Study

PPMI Steering
Committee

Fox Foundation
for PD Research

<

MIFF- Michael ). [

9000001
8000004
7000004
6000004
5000004
4000004
3000004
2000004
1000004

04

@l Serious
@l Death

Advisory Board

PPMI
Sites

Number of Reports

®

Adverse Drug €%ents from
EHR/Med abstracts AAAI 12,
AIME 15, EMNLP (under

preparation)

Parkinsons’ prediction from
Study data (AIME 17)

Alzheimer’s /diabetes prediction from
FMRI (IJMLC 13, Neuroradiology,
ICMLA 12Jour of Neurotrauma 15)



Conclusions

Al in the wild is more than a single table - Graphs,
different data types, relational DBs, ... are central to HAAI

Symmetry/Relation aware Al is essential

Sequential models and dynamic models that do not make
simplistic assumptions are necessary

Human is an ally in learning and Al system needs to
efficiently use human knowledge and input

Deployment: medicine, social science, traffic, journalism,
... and the Data Science Genome: Machines read and
understand data science publications and help the user
with their problem at hand



Next Steps

Web-scale StaRAI

More applications
— NELL, relation extraction, more EHRs, imaging data

Learning from Multiple Experts

Efficient Inference for CTBNs

“Truly” Hybrid Models

Combine with efficient inference techniques
— Approximate counting & Approximate inference

Solve a *dream™ problem
— Relational POMDPs



