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Hands-On Lecture
Goal of the lecture 
Use some StaRAI frameworks to build models, perform 
learning and inference, upon some classic applications, 
such as entity classification and link prediction. 

Software 
• Alchemy (Markov Logic Networks) 
• ProbLog (lecture by Prof. Luc De Raedt) 
• cplint (lecture by Prof. Fabrizio Riguzzi)



Hands-On Lecture

Also demos running on browsers (fewer features) 
• http://pracmln.open-ease.org/  
• https://dtai.cs.kuleuven.be/problog/editor.html  
• http://cplint.eu/



StaRAI Problems

StaRAI applications typically have to deal with three 
distinct, but strongly inter-related problems… 
• Inference 
• Parameter Learning 
• Structure Learning



Inference
Inference in StaRAI lies at the intersection between 
logical inference and probabilistic inference 

Logical Inference 

Inferring the truth value of some logic facts, given a 
collection of some facts and some rules 

Probabilistic inference 

Inferring the posterior distribution of unobserved 
random variables, given observed ones 



Parameter Learning

Typically, StaRAI models specify a set of parameters 
(probabilities or real values) attached to rules/clauses 

These parameters can be learned from data



Structure Learning

A much more challenging problem would be that of 
directly learning the rules (the structure) of the model 

Different approaches… 

• Jointly learn parameters and rules 

• First learn rules (i.e., with ILP), then their weights



Tasks
Typical tasks in Statistical Relational AI 
• Entity classification 
• Entity resolution 
• Link prediction 
• … 

For most of the applications, there might be need to 
perform collective (joint) classification



Entity Classification
• User profiles in a social network 

• Gene functions in a regulatory network 

• Congestions in a transportation network 

• Service requests in p2p networks 

• Fault diagnosis in sensor networks 

• Hypertext categorization on the Internet ...  

• …



Entity Classification
Which features? 

• Use attributes of each node 

• Use attributes of neighbourhood 

• Use attributed coming from the graph structure 

• Use labels of other nodes 

Principle of co-citation regularity: similar individuals 
tend to be related/connected to the same things

Image from Wikipedia



Link Prediction
• Friendship in a social network 

• Recommendation in a customer-product network 

• Interaction in a biological network 

• Congestion in a transportation network 

• Congestion in a p2p network 

• Support/Attack links in argumentation mining 

• …



Link Prediction
Which features? 

• Use attributes of edge 

• Use attributes of involved nodes 

• Use attributed coming from the graph structure 

• Use labels of other edges 

Concept of homophily: a link between individuals is 
correlated with such individuals being similar in nature

Image from Wikipedia



Tasks

Statistical Relational AI tasks have some peculiarities 

• Examples are typically not independent 
• Networks are very often dynamic 
• It might be tricky to perform model validation 
• …



Tasks
Dynamic networks: 

• Nodes and links may change over time 

• Node and link properties may change over time 

Shall we predict the evolution of the network? 

Use the network at time T for training and the 
network at time T+K for validation/testing 



Tasks

How to perform model validation over network(s), 
given that examples are not independent? 

Possible scenarios: 

1. A single static network (e.g., recommendation) 

2. Many small networks (e.g., molecules, proteins) 

3. A single evolving network (e.g., traffic, transport)



Tasks
Validation with a single static network 

TRAINING SET

TEST SET

SPLIT THE NETWORK BY 
CUTTING SOME EDGES



Tasks
Validation with many small networks 

TRAINING SET

TEST SET

SPLIT THE NETWORKS 
INTO DISJOINT SETS



Tasks
Validation with a single evolving network 

TRAINING SET

TEST SET

CONSIDER DIFFERENT TIMES 
FOR TRAINING AND TEST



Markov Logic Networks
Logic imposes hard constraints on the set of possible 
worlds. Markov logic exploits soft constraints. 

A Markov Logic Network is defined by: 
• a set of first-order formulae 
• a set of weights, one attached to each formula 

A world violating a formula becomes less probable 
but not impossible!



Markov Logic Networks

Example 
1.2 Friends(x,y) ^ WatchedMovie(x,m) => WatchedMovie(y,m)
2.3 Friends(x,y) ^ Friends(y,z) => Friends(x,z)  
0.8 LikedMovie(x,m) ^ Friends(x,y) => LikedMovie(y,m)

The higher the weight of a clause => 
   => The lower the probability for a world violating that clause  

What is a world or Herbrand interpretation? 
   => A truth assignment to all ground predicates 



Markov Logic Networks

Beware of the differences in the syntax… 

• In MLN, constants are uppercase (e.g., Alice) and 
variables are lowercase (e.g., person) 

• In ProbLog, constants are lowercase (e.g., alice) 
and variables are uppercase (e.g., Person)



Markov Logic Networks

Together with a (finite) set of (unique and possibly typed) 
constants, an MLN defines a Markov Network which contains: 

1. a binary node for each predicate grounding in the MLN, 
with value 0/1 if the atom is false/true 

2. an edge between two nodes appearing together in (at least) 
one formula on the MLN 

3. a feature for each formula grounding in the MLN, whose 
value is 0/1 if the formula is false/true, and whose weight is 
the weight of the formula



Markov Logic Networks
Set of constants: 

people = {Alice,Bob,Carl,David}  
movie = {BladeRunner,ForrestGump,PulpFiction,TheMatrix} 



Markov Logic Networks
Special cases of MLNs include: 
• Markov networks 
• Log-linear models 
• Exponential models 
• Gibbs distributions 
• Boltzmann machines 
• Logistic regression 
• Hidden Markov Models 
• Conditional Random Fields 
• …



Markov Logic Networks
The semantics of MLNs induces a probability distribution over 
all possible worlds. We indicate with X a set of random variables 
represented in the model, then we have:  

being          the number of true groundings of formula i in world x 
and Z is the partition function 
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Markov Logic Networks

The definition is similar to the joint probability distribution induced 
by a Markov network and expressed with a log-linear model:  
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Markov Logic Networks
Discriminative setting: typically, some atoms are always observed 
(evidence X), while others are unknown at prediction time (query Y)  

P (Y = y|X = x) =

exp

�P
Fi2F w

i

n

i

(x, y)

�

Z

x



Markov Logic Networks
In the discriminative setting, inference corresponds to 
finding the most likely interpretation (MAP – Maximum 
A Posteriori) given the observed evidence 

• #P-complete problem => approximate algorithms 

• MaxWalkSAT [Kautz et al., 1996], stochastic local 
search => minimize the sum of unsatisfied clauses



Markov Logic Networks
MaxWalkSAT algorithm 

for i ← 1 to max-tries do 
    solution = random truth assignment 
    for j ← 1 to max-flips do 
        if sum of weights (satisfied clauses) > threshold then 
            return solution 
        c ← random unsatisfied clause 
        with probability p 
            flip a random variable in c 
        else 
            flip variable in c that maximizes sum of weights (satisfied clauses)                 
return failure, best solution found



Markov Logic Networks

MaxWalkSAT: key ideas… 

• start with a random truth value assignment 

• flip the atom giving the highest improvement (greedy) 

• can get stuck in local minima 

• sometimes perform a random flip 

• stochastic algorithm (many runs often needed) 

• need to build the whole ground network!



Markov Logic Networks
Besides MAP inference, Markov Logic allows to 
compute also the probability that each atom is true 

Key idea: employ a MonteCarlo approach 

• MCMC with Gibbs sampling 

• MC-SAT (sample over satisfying assignments) 

• … 

Now moving towards lifted inference!



Markov Logic Networks
MC-SAT Algorithm 

X(0) ← A random solution satisfying all hard clauses 
for k ← 1 to num_samples 
 M ← Ø 
 forall C satisfied by X(k–1) 
  With probability 1 – exp(–w) add C to M 
 endfor 
 X (k) ← A uniformly random solution satisfying M 
endfor

Lazy variant: only ground 
what is needed (active)



Markov Logic Networks
Parameter learning: maximize conditional log likelihood (CLL) 
of query predicates given evidence: inference as subroutine! 

Several algorithms for this task:  

• Voted Perceptron 

• Contrastive Divergence 

• Diagonal Newton 

• (Preconditioned) Scaled Conjugate Gradient 



Markov Logic Networks
Directly infer the rules from the data 
 
Classic task for Inductive Logic Programming (ILP), to be 
addressed jointly or separately wrt parameter learning  

• Modified ILP algorithms (e.g., Aleph) 

• Bottom-Up Clause Learning 

• Iterated Local Search 

• Structural Motifs 

Still much an open problem!



Markov Logic Networks
Remarks on expressivity 
 
MLNs exploit first-order logic clauses 

• Infinite weights for hard constraints (pure FOL rules) 

• Existential and universal quantifiers 

• Contradictions are allowed 

Existential quantifiers are translated into a disjunction, 
with the caveat that it can make groundings explode!



Tractable Markov Logic

• Exploit tractable subsets of first-order logic! 

• Relations such as subclass, subpart, instance of, … 

• Use probabilistic theorem proving for inference 

• Compute partition function in polynomial time/space 

http://alchemy.cs.washington.edu/lite

http://alchemy.cs.washington.edu/lite


MLN vs. ProbLog vs. LPAD

Weights vs. probabilities 

• In an MLN, the weight of formula F is the log odds 
between a world where F is true and a world where 
F is false, other things being equal 

• In ProbLog and LPAD, we model directly the 
probability that a rule is true



Interpreting MLN Weights

Back to the probability distribution induced by an MLN 

Suppose to have four rules with one grounding each 

Suppose to have two distinct MLNs, where the only 
difference is that one of the rules has double weight 

What happens to the probability distribution?
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Interpreting MLN Weights
MLN #1 

MLN #2 

Odd Ratio 

P (X = x) = exp(w0+w1+w2+w3)

Z

P (X = x) = exp(w0+w1+w2+2·w3)

Z

exp(w0+w1+w2+2·w3)

w0+w1+w2+w3
= ew3



Alchemy Data Format
.mln file 

• Predicate definition (including types) 

• Rules (possibly including weights) 

.db file 

Ground evidence predicates (during training and test) 

Ground query predicates (during training only) 

Open vs. Closed world assumption!



Example 1

Toy Link Prediction Problem 

• Tiny network 

• Nodes have a color 

• The probability of a link between two nodes depend 
on the colours of such nodes



Example 1
Toy Link Prediction Problem (MLN) 

.mln file (version 1) 

Red(node) 
Blue(node) 
Green(node) 
Link(node,node) 

Link(x,y) <=> Link(y,x). 
Red(x) ^ Red(y) => Link(x,y) 
Green(x) ^ Green(y) => Link(x,y) 
Blue(x) ^ Blue (y) => Link(x,y) 
Red(x) ^ Green(y) => Link(x,y) 
Green(x) ^ Red(y) => Link(x,y) 
. . . 



Example 1
Toy Link Prediction Problem (MLN) 

.db file (version 1) 

Red(N1) 
Green(N2) 
Green(N3) 
Blue(N4) 
Red(N5) 
. . . 
Link(N2,N3) 
Link(N3,N2) 
Link(N2,N10) 
. . . 
!Link(N1,N1) 
!Link(N1,N2) 
. . .

! indicates the negation sign in Alchemy



Example 1
Toy Link Prediction Problem (MLN) 

.mln file (version 2) 

Color(node,value) 
Link(node,node) 

Link(x,y) <=> Link(y,x). 
Color(x,+c1) ^ Color(y,+c2) => Link(x,y) 

Using the + is a shortcut of the Alchemy language to 
indicate all possible combinations of constants! 



Example 1
Toy Link Prediction Problem (MLN) 

.db file (version 2) 

Color(N1,Red) 
Color(N2,Green) 
Color(N3,Green) 
Color(N4,Blue) 
Color(N5,Red) 
. . . 
Link(N2,N3) 
Link(N3,N2) 
Link(N2,N10) 
. . . 
!Link(N1,N1) 
!Link(N1,N2) 
. . .



Example 1
Toy Link Prediction Problem (ProbLog) 

model file 

t(_)::link(X,Y) :- red(X), red(Y). 
t(_)::link(X,Y) :- green(X), green(Y). 
t(_)::link(X,Y) :- blue(X), blue(Y). 
t(_)::link(X,Y) :- red(X), blue(Y). 
. . . 

1::link(X,Y) :- link(Y,X). 

red(n1). 
green(n2). 
green(n3). 
. . . 



Example 1
Toy Link Prediction Problem (ProbLog) 

data file 

evidence(link(n2,n3),true). 
evidence(link(n3,n2),true). 
evidence(link(n2,n10),true). 
evidence(link(n10,n2),true). 
evidence(link(n3,n10),true). 
evidence(link(n10,n3),true). 
. . . 
evidence(link(n1,n1),false). 
evidence(link(n1,n2),false). 
evidence(link(n1,n3),false). 
. . . 



Example 1
Toy Link Prediction Problem (ProbLog) 

command line 

> problog lfi model.pl data.pl -O output.pl 

> problog -h 

> problog lfi -h 



Example 1
Toy Link Prediction Problem (cplint) 

Load splicover and initialize input theory 

:- use_module(library(slipcover)). 
:- sc. 
:- set_sc(verbosity,3). 

:- begin_in. 
link(X,Y):0.1 :- red(X), red(Y). 
link(X,Y):0.1 :- green(X), green(Y). 
link(X,Y):0.1 :- blue(X), blue(Y). 
link(X,Y):0.1 :- red(X), blue(Y). 
link(X,Y):0.1 :- blue(X), red(Y). 
. . . 
:- end_in. 

NOTE: the value of the
probability is not important,

but necessary for the learning!



Example 1
Toy Link Prediction Problem (cplint) 

Background knowledge (if any) and language bias 

output(link/2). 
input_cw(red/1). 
input_cw(green/1). 
input_cw(blue/1). 

determination(link/2,red/1). 
determination(link/2,green/1). 
determination(link/2,blue/1). 

modeh(*,link(node,node)). 
modeb(*,red(-node)). 
modeb(*,blue(-node)). 
modeb(*,green(-node)).



Example 1
Toy Link Prediction Problem (cplint) 

Training data 

fold(train,[training_set]). 

begin(model(training_set)). 
red(n1). 
green(n2). 
. . . 
link(n2,n3). 
link(n3,n2). 
. . . 
neg(link(n1,n1)). 
neg(link(n1,n2)). 
end(model(training_set)). 



Example 1
Let us consider the model again… 

Is this really relational learning? 

Did we really perform collective classification? 

Which rules did spread information among nodes? 



Example 2

Hypertext classification (MLN) 

Link(page,page)
HasWord(page,word)
Topic(page,topic)

HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Link(p,q) => Topic(q,t) 



Example 2

Hypertext classification (ProbLog) 

We can use a trick similar to the 
use of + for the Alchemy syntax! 

t(_)::topic(P,T) :- link(P,Q), topic(Q,T).
t(_,W,T)::topic(P,T) :- hasword(P,W).



Example 2
Now, this model does exploit relational information! 

Could we model the same problem with standard 
machine learning classifiers (i.e., SVM, NN, RF)? 

Yes? No? Maybe? 



Example 3

Protein Secondary Structure 

Residue(sequence,position,aminoacid)
SecondaryStructure(sequence,position,class)

Residue(s,p,+a) => SecondaryStructure(s,p,+c)

SecondaryStructure(s,p1,c) =>        
         SecondaryStructure(s,succ(p1),c)



Example 3
Beware of unwanted (spurious) groundings with MLN! 
If the knowledge base contains a predicate such as: 

Residue(sequence,position,aminoacid)

then Alchemy will expect ground predicates for all 
possible combinations of sequences and positions, 
even if a position is not part of a sequence! 

This is not important for evidence predicates (since 
they are closed world) but for query predicates!



Example 3
For example, with the following database: 

Residue(S1,1,C)
. . .
Residue(S1,72,A)
Residue(S2,1,R)
. . .
Residue(S2,66,S)

then Alchemy will also build/expect the query 
predicate SecondaryStructure(S2,P72,CLASS)



Example 3

This problem can be circumvented by using the 
multipleDatabases option, which allows for 
multiple .db files with independent constant sets 

With ProbLog and LPAD this problem does not occur 
because we perform learning from interpretations: 
you basically can have a different interpretation for 
each training “world”.



Example 4
Information Retrieval — MLN 

InQuery(word)
HasWord(page,word)
Link(page,page)
Relevant(page)

HasWord(p,+w) ^ InQuery(w) => Relevant(p)
Relevant(p) ^ Link(p,q) => Relevant(q) 
 

QUERYx

x
x



Example 4
Information Retrieval 

Try to perform weight learning and then inference 
with Alchemy with default parameters…  

What is the problem? 
QUERYx

x
x



Example 4
Information Retrieval 

Try to perform structure learning with Alchemy with 
default parameters… 

What is the problem? 
QUERYx

x
x



Example 4
Information Retrieval — ProbLog 

t(_)::relevant(P).
t(_)::relevant(P) :- hyperlink(Q,P), relevant(Q).
t(_,W)::relevant(P) :- hasword(P,W), inquery(W).

inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).



Example 4
Information Retrieval — ProbLog 

evidence(relevant(p1),true).
evidence(relevant(p2),false).
evidence(relevant(p3),true).
evidence(relevant(p4),true).
evidence(relevant(p5),false).
evidence(relevant(p6),false).



Example 4
Information Retrieval — ProbFOIL (Structure Learning) 

% Modes
mode(inquery(+)).
mode(inquery(c)).
mode(hasword(+,c)).
mode(hasword(+,-)).
mode(hyperlink(+,-)).
mode(hyperlink(-,+)).

% Type definitions
base(relevant(page)).
base(hyperlink(page,page)).
base(hasword(page,word)).
base(inquery(word)).



Example 4
Information Retrieval — ProbFOIL (Structure Learning) 

% Target
learn(relevant/1).

% How to generate negative examples
example_mode(auto).

Command line 

probfoil information_retrieval_settings.pl 
information_retrieval_data_full.pl



Example 4
Information Retrieval — cplint (Parameter Learning) 

:- use_module(library(slipcover)).
:- sc.
:- set_sc(max_iter,5).
:- set_sc(verbosity,3).

:- begin_in.
relevant(P):0.1 :- hyperlink(Q,P), relevant(Q).
% relevant(P):t(_,W): :- hasword(P,W), inquery(W).
relevant(P):0.1 :- hasword(P,apartment), inquery(apartment).
relevant(P):0.1 :- hasword(P,boston), inquery(boston).
relevant(P):0.1 :- hasword(P,rent), inquery(rent).
:- end_in.



Example 4
Information Retrieval — cplint (Parameter Learning) 

:- begin_bg.
inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).
hyperlink(p1,p2).
hyperlink(p1,p3).
:- end_bg.

% Fold definition
fold(train,[train1]).



Example 4
Information Retrieval — cplint (Parameter Learning) 

% Language bias
output(relevant/1).

input_cw(hasword/2).
input_cw(hyperlink/2).
input_cw(inquery/1).

determination(relevant/1,hyperlink/2).
determination(relevant/1,hasword/2).
determination(relevant/1,inquery/1).

modeh(*,relevant(page)).
modeb(*,hyperlink(-page,page)).
modeb(*,hasword(-page,word)).
modeb(*,inquery(word)).



Example 4
Information Retrieval — cplint (Parameter Learning) 

% Models / Examples
begin(model(train1)).
relevant(p1).
neg(relevant(p2)).
relevant(p3).
relevant(p4).
neg(relevant(p5)).
neg(relevant(p6)).
end(model(train1)).

induce_par([train],P).



Example 4
Information Retrieval — cplint (Structure Learning) 

:- use_module(library(slipcover)).
:- sc.

:- set_sc(verbosity,3).
:- set_sc(initial_clauses_per_megaex,3).

:- begin_in.
:- end_in.

:- begin_bg.
:- end_bg.

% Fold definition
fold(train,[train1]).



Example 4
Information Retrieval — cplint (Structure Learning) 

output(relevant/1).
input_cw(hasword/2).
input_cw(hyperlink/2).
input_cw(inquery/1).

determination(relevant/1,hyperlink/2).
determination(relevant/1,hasword/2).
determination(relevant/1,inquery/1).

modeh(*,relevant(+page)).
modeb(*,hyperlink(-page,+page)).
modeb(*,hyperlink(+page,-page)).
modeb(*,hasword(+page,-#word)).
modeb(*,inquery(-#word)).



Example 4
Information Retrieval — cplint (Structure Learning) 

begin(model(train1)).
inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).
hasword(p1,massachussets).
. . .
hyperlink(p1,p2).
hyperlink(p1,p3).
hyperlink(p4,p3).
. . .
relevant(p1).
neg(relevant(p2)).
end(model(train1)).



Example 5
Movie recommendation 

Will person X like movie M? 

0.3::comedy(X) :- movie(X).
0.4::drama(X) :- movie(X).
0.2::friends(X,Y) :- person(X), person(Y).
0.1::likes(X,M) :- person(X), movie(M).

0.3::likes(X,M) :- comedy(M).
0.2::likes(X,M) :- drama(M).
0.3::likes(X,M) :- friend(X,Y), likes(Y,M).



Example 5
person(alice). person(bob).
person(carl). person(david).
movie(bladerunner). movie(thematrix).

friend(alice,bob). friend(bob,alice).
friend(bob,david). friend(david,bob).

likes(alice,bladerunner). likes(bob,bladerunner).
likes(carl,thematrix). likes(david,thematrix).
likes(david,bladerunner).

query(likes(alice,thematrix)).
query(likes(carl,bladerunner)).



Remarks on Complexity

These SRL frameworks are highly expressive and 
powerful, but unfortunately they can easily become 
memory-intensive and time-consuming 

• Try to model the problem differently 

• If possible, partition the data 

• Reduce the expressivity of the model



Open Challenges

• Efficient inference algorithms 

• Scalability 

• Structure learning 

• Continuous variables/features



Continuous Features
• Hybrid Markov Logic Networks 

• Ground-Specific Markov Logic Networks 

• DeepProbLog 

• Relational Neural Networks 

• Learning from Constraints 

• TensorLog 

• cplint (for inference)  

• …



Hybrid MLNs

Introduced in [Wang & Domingos, 2008] 

Continuous properties/functions usable as features 

Extending MC-SAT and MaxWalkSAT algorithms 

(SomeEvidence(x) < 2.3) => SomeQuery(x)
SomeQuery(x) * (SomeEvidence(x) = 1.2)



Ground-Specific MLNs
Introduced in [Lippi & Frasconi, 2009] 

Use neural networks to predict the weight of rules 

No single weight for each first-order logic formula, but 
a different weight for each ground formula 

Trained by standard back-propagation! 
w1: Node(X,$Features_X) ^ Node(Y,$Features_Y)

=> Link(X,Y)

w2: Node(P,$Features_P) ^ Node(Q,$Features_Q)
=> Link(P,Q)



Ground-Specific MLNs
Predict whether two residues in a protein are linked… 



Ground-Specific MLNs
• Perform multiple alignment 

• Use the profile of the window as input features 



Ground-Specific MLNs
• Re-parametrization of MLN 

• Compute each weight as a function of the grounding  



Ground-Specific MLNs
• Inference algorithms do not change 

• Learning algorithms implement gradient descent 

where the first term is computed by MLN inference 

and the second term is computed by backprop



DeepProbLog

Introduced in [Manhaeve et al., 2018] 

Integrating logical reasoning with neural networks 

Symbolic and sub-symbolic representation/inference 

Ground neural annotated disjunctions 
Output of NNs translated into probabilities (softmax) 

End-to-end training with back-propagation



ProbLog and cplint

Remember that also ProbLog and cplint can handle 
continuous variables for inference…



More Frameworks

• Knowledge-based artificial neural networks [Towell & Shavlik, 1994] 

• Learning from Constraints [Diligenti et al. 2012] 

• Lifted Relational Neural Networks [Sourek et al., 2015] 

• Logic Tensor Networks [Serafini & d’Avila Garcez, 2016] 

• Relational Neural Networks [Kazemi & Poole, 2017] 

• TensorLog [Cohen et al., 2017] 

• Relational recurrent neural networks [Santoro et al., 2018] 

• ???



Data Resources

• https://alchemy.cs.washington.edu/data 

• https://linqs.soe.ucsc.edu/data 

• http://netkit-srl.sourceforge.net/data.html 

• http://cplint.ml.unife.it/ 

• https://snap.stanford.edu/data/

https://alchemy.cs.washington.edu/data
https://linqs.soe.ucsc.edu/data
http://netkit-srl.sourceforge.net/data.html
http://cplint.ml.unife.it/
https://snap.stanford.edu/data/


MovieLens Dataset
A dataset of movie ratings 

• User information (age, sex, occupation, zipcode) 

• Movie information (genres, release date) 

• Rating information (user, item, rating, timestamp) 

BIPARTITE 
GRAPH



Exercise 1

Rating prediction (recommendation) 

The aim is to predict the rating a user gives to an item 

• Consider past ratings information only 

• Consider also user information 

• Consider also item information 

• How to consider timestamps?



Exercise 2

User classification (profiling) 

The aim is to predict some property of a user 

• Consider past ratings information only (?) 

• Consider also information about other users 

• Consider also item information 

• How to consider timestamps?



Argumentation Mining

Figure from 
[Lippi & Torroni 2016]



Argumentation Mining
The standard pipeline 

Figure from 
[Lippi & Torroni 2016]



Argumentation Mining
Persuasive Essays corpus labeled with  

• Claims, MajorClaims, Premises (components) 

• Support/Attack (relations) 

• Stance (against/for) 

Figure from [Stab & Gurevych 2016]



Argumentation Mining

Figure from [Stab & Gurevych 2016]



Exercise 3

Argument component classification 

The aim is to predict the type of argument component 

• Consider words in a sentence 

• Consider sequence of argument components 

• Consider order/position of sentences



Exercise 4
Structure prediction 

The aim is to predict the relations between argument 
components (i.e., the links in the argument graph) 

• Consider words in sentences 

• Consider order/position of sentences 

• Consider distances between components 

• Jointly predict argument components?



Exercise 5
Traffic congestion 

Traffic at time T Traffic at time T+1



Exercise 5
Traffic congestion 

Traffic at time T Traffic at time T+1

REMEMBER TO 
COMPUTE BASELINES! 

WHICH ARE GOOD BASELINES?



Exercise 6
Finding communities… IS IT A PARTITION? 

OR CAN GROUPS BE OVERLAPPING?


