
Ferrara, August 29th 2018

Applications of
Statistical Relational AI

Advanced Course in Artificial Intelligence (ACAI 2018)

Marco Lippi
marco.lippi@unimore.it

mailto:marco.lippi@unimore.it

Hands-On Lecture
Goal of the lecture
Use some StaRAI frameworks to build models, perform
learning and inference, upon some classic applications,
such as entity classification and link prediction.

Software
• Alchemy (Markov Logic Networks)
• ProbLog (lecture by Prof. Luc De Raedt)
• cplint (lecture by Prof. Fabrizio Riguzzi)

Hands-On Lecture

Also demos running on browsers (fewer features)
• http://pracmln.open-ease.org/
• https://dtai.cs.kuleuven.be/problog/editor.html
• http://cplint.eu/

StaRAI Problems

StaRAI applications typically have to deal with three
distinct, but strongly inter-related problems…
• Inference
• Parameter Learning
• Structure Learning

Inference
Inference in StaRAI lies at the intersection between
logical inference and probabilistic inference

Logical Inference

Inferring the truth value of some logic facts, given a
collection of some facts and some rules

Probabilistic inference

Inferring the posterior distribution of unobserved
random variables, given observed ones

Parameter Learning

Typically, StaRAI models specify a set of parameters
(probabilities or real values) attached to rules/clauses

These parameters can be learned from data

Structure Learning

A much more challenging problem would be that of
directly learning the rules (the structure) of the model

Different approaches…

• Jointly learn parameters and rules

• First learn rules (i.e., with ILP), then their weights

Tasks
Typical tasks in Statistical Relational AI
• Entity classification
• Entity resolution
• Link prediction
• …

For most of the applications, there might be need to
perform collective (joint) classification

Entity Classification
• User profiles in a social network

• Gene functions in a regulatory network

• Congestions in a transportation network

• Service requests in p2p networks

• Fault diagnosis in sensor networks

• Hypertext categorization on the Internet ...

• …

Entity Classification
Which features?

• Use attributes of each node

• Use attributes of neighbourhood

• Use attributed coming from the graph structure

• Use labels of other nodes

Principle of co-citation regularity: similar individuals
tend to be related/connected to the same things

Image from Wikipedia

Link Prediction
• Friendship in a social network

• Recommendation in a customer-product network

• Interaction in a biological network

• Congestion in a transportation network

• Congestion in a p2p network

• Support/Attack links in argumentation mining

• …

Link Prediction
Which features?

• Use attributes of edge

• Use attributes of involved nodes

• Use attributed coming from the graph structure

• Use labels of other edges

Concept of homophily: a link between individuals is
correlated with such individuals being similar in nature

Image from Wikipedia

Tasks

Statistical Relational AI tasks have some peculiarities

• Examples are typically not independent
• Networks are very often dynamic
• It might be tricky to perform model validation
• …

Tasks
Dynamic networks:

• Nodes and links may change over time

• Node and link properties may change over time

Shall we predict the evolution of the network?

Use the network at time T for training and the
network at time T+K for validation/testing

Tasks

How to perform model validation over network(s),
given that examples are not independent?

Possible scenarios:

1. A single static network (e.g., recommendation)

2. Many small networks (e.g., molecules, proteins)

3. A single evolving network (e.g., traffic, transport)

Tasks
Validation with a single static network

TRAINING SET

TEST SET

SPLIT THE NETWORK BY
CUTTING SOME EDGES

Tasks
Validation with many small networks

TRAINING SET

TEST SET

SPLIT THE NETWORKS
INTO DISJOINT SETS

Tasks
Validation with a single evolving network

TRAINING SET

TEST SET

CONSIDER DIFFERENT TIMES
FOR TRAINING AND TEST

Markov Logic Networks
Logic imposes hard constraints on the set of possible
worlds. Markov logic exploits soft constraints.

A Markov Logic Network is defined by:
• a set of first-order formulae
• a set of weights, one attached to each formula

A world violating a formula becomes less probable
but not impossible!

Markov Logic Networks

Example
1.2 Friends(x,y) ^ WatchedMovie(x,m) => WatchedMovie(y,m)
2.3 Friends(x,y) ^ Friends(y,z) => Friends(x,z)  
0.8 LikedMovie(x,m) ^ Friends(x,y) => LikedMovie(y,m)

The higher the weight of a clause =>
 => The lower the probability for a world violating that clause

What is a world or Herbrand interpretation? 
 => A truth assignment to all ground predicates

Markov Logic Networks

Beware of the differences in the syntax…

• In MLN, constants are uppercase (e.g., Alice) and
variables are lowercase (e.g., person)

• In ProbLog, constants are lowercase (e.g., alice)
and variables are uppercase (e.g., Person)

Markov Logic Networks

Together with a (finite) set of (unique and possibly typed)
constants, an MLN defines a Markov Network which contains:

1. a binary node for each predicate grounding in the MLN,
with value 0/1 if the atom is false/true

2. an edge between two nodes appearing together in (at least)
one formula on the MLN

3. a feature for each formula grounding in the MLN, whose
value is 0/1 if the formula is false/true, and whose weight is
the weight of the formula

Markov Logic Networks
Set of constants:

people = {Alice,Bob,Carl,David}  
movie = {BladeRunner,ForrestGump,PulpFiction,TheMatrix}

Markov Logic Networks
Special cases of MLNs include:
• Markov networks
• Log-linear models
• Exponential models
• Gibbs distributions
• Boltzmann machines
• Logistic regression
• Hidden Markov Models
• Conditional Random Fields
• …

Markov Logic Networks
The semantics of MLNs induces a probability distribution over
all possible worlds. We indicate with X a set of random variables
represented in the model, then we have:

being the number of true groundings of formula i in world x
and Z is the partition function

Z =

X

x2X
exp

X

Fi2F
w

i

n

i

(x)

!

P (X = x) =

exp

�P
Fi2F wini(x)

�

Z

Markov Logic Networks

The definition is similar to the joint probability distribution induced
by a Markov network and expressed with a log-linear model:

P (X = x) =

exp

�P
Fi2F wini(x)

�

Z

P (X = x) =

exp

⇣P
j wjfj(x)

⌘

Z

Markov Logic Networks
Discriminative setting: typically, some atoms are always observed
(evidence X), while others are unknown at prediction time (query Y)

P (Y = y|X = x) =

exp

�P
Fi2F w

i

n

i

(x, y)

�

Z

x

Markov Logic Networks
In the discriminative setting, inference corresponds to
finding the most likely interpretation (MAP – Maximum
A Posteriori) given the observed evidence

• #P-complete problem => approximate algorithms

• MaxWalkSAT [Kautz et al., 1996], stochastic local
search => minimize the sum of unsatisfied clauses

Markov Logic Networks
MaxWalkSAT algorithm

for i ← 1 to max-tries do
 solution = random truth assignment
 for j ← 1 to max-flips do
 if sum of weights (satisfied clauses) > threshold then
 return solution
 c ← random unsatisfied clause
 with probability p
 flip a random variable in c
 else
 flip variable in c that maximizes sum of weights (satisfied clauses)
return failure, best solution found

Markov Logic Networks

MaxWalkSAT: key ideas…

• start with a random truth value assignment

• flip the atom giving the highest improvement (greedy)

• can get stuck in local minima

• sometimes perform a random flip

• stochastic algorithm (many runs often needed)

• need to build the whole ground network!

Markov Logic Networks
Besides MAP inference, Markov Logic allows to
compute also the probability that each atom is true

Key idea: employ a MonteCarlo approach

• MCMC with Gibbs sampling

• MC-SAT (sample over satisfying assignments)

• …

Now moving towards lifted inference!

Markov Logic Networks
MC-SAT Algorithm

X(0) ← A random solution satisfying all hard clauses
for k ← 1 to num_samples
 M ← Ø
 forall C satisfied by X(k–1)
 With probability 1 – exp(–w) add C to M
 endfor
 X (k) ← A uniformly random solution satisfying M
endfor

Lazy variant: only ground
what is needed (active)

Markov Logic Networks
Parameter learning: maximize conditional log likelihood (CLL)
of query predicates given evidence: inference as subroutine!

Several algorithms for this task:

• Voted Perceptron

• Contrastive Divergence

• Diagonal Newton

• (Preconditioned) Scaled Conjugate Gradient

Markov Logic Networks
Directly infer the rules from the data
 
Classic task for Inductive Logic Programming (ILP), to be
addressed jointly or separately wrt parameter learning

• Modified ILP algorithms (e.g., Aleph)

• Bottom-Up Clause Learning

• Iterated Local Search

• Structural Motifs

Still much an open problem!

Markov Logic Networks
Remarks on expressivity
 
MLNs exploit first-order logic clauses

• Infinite weights for hard constraints (pure FOL rules)

• Existential and universal quantifiers

• Contradictions are allowed

Existential quantifiers are translated into a disjunction,
with the caveat that it can make groundings explode!

Tractable Markov Logic

• Exploit tractable subsets of first-order logic!

• Relations such as subclass, subpart, instance of, …

• Use probabilistic theorem proving for inference

• Compute partition function in polynomial time/space

http://alchemy.cs.washington.edu/lite

http://alchemy.cs.washington.edu/lite

MLN vs. ProbLog vs. LPAD

Weights vs. probabilities

• In an MLN, the weight of formula F is the log odds
between a world where F is true and a world where
F is false, other things being equal

• In ProbLog and LPAD, we model directly the
probability that a rule is true

Interpreting MLN Weights

Back to the probability distribution induced by an MLN

Suppose to have four rules with one grounding each

Suppose to have two distinct MLNs, where the only
difference is that one of the rules has double weight

What happens to the probability distribution?

P (X = x) =

exp

�P
Fi2F wini(x)

�

Z

Interpreting MLN Weights
MLN #1

MLN #2

Odd Ratio

P (X = x) = exp(w0+w1+w2+w3)

Z

P (X = x) = exp(w0+w1+w2+2·w3)

Z

exp(w0+w1+w2+2·w3)

w0+w1+w2+w3
= ew3

Alchemy Data Format
.mln file

• Predicate definition (including types)

• Rules (possibly including weights)

.db file

Ground evidence predicates (during training and test)

Ground query predicates (during training only)

Open vs. Closed world assumption!

Example 1

Toy Link Prediction Problem

• Tiny network

• Nodes have a color

• The probability of a link between two nodes depend
on the colours of such nodes

Example 1
Toy Link Prediction Problem (MLN)

.mln file (version 1)

Red(node)
Blue(node)
Green(node)
Link(node,node)

Link(x,y) <=> Link(y,x).
Red(x) ^ Red(y) => Link(x,y)
Green(x) ^ Green(y) => Link(x,y)
Blue(x) ^ Blue (y) => Link(x,y)
Red(x) ^ Green(y) => Link(x,y)
Green(x) ^ Red(y) => Link(x,y)
. . .

Example 1
Toy Link Prediction Problem (MLN)

.db file (version 1)

Red(N1)
Green(N2)
Green(N3)
Blue(N4)
Red(N5)
. . .
Link(N2,N3)
Link(N3,N2)
Link(N2,N10)
. . .
!Link(N1,N1)
!Link(N1,N2)
. . .

! indicates the negation sign in Alchemy

Example 1
Toy Link Prediction Problem (MLN)

.mln file (version 2)

Color(node,value)
Link(node,node)

Link(x,y) <=> Link(y,x).
Color(x,+c1) ^ Color(y,+c2) => Link(x,y)

Using the + is a shortcut of the Alchemy language to
indicate all possible combinations of constants!

Example 1
Toy Link Prediction Problem (MLN)

.db file (version 2)

Color(N1,Red)
Color(N2,Green)
Color(N3,Green)
Color(N4,Blue)
Color(N5,Red)
. . .
Link(N2,N3)
Link(N3,N2)
Link(N2,N10)
. . .
!Link(N1,N1)
!Link(N1,N2)
. . .

Example 1
Toy Link Prediction Problem (ProbLog)

model file

t(_)::link(X,Y) :- red(X), red(Y).
t(_)::link(X,Y) :- green(X), green(Y).
t(_)::link(X,Y) :- blue(X), blue(Y).
t(_)::link(X,Y) :- red(X), blue(Y).
. . .

1::link(X,Y) :- link(Y,X).

red(n1).
green(n2).
green(n3).
. . .

Example 1
Toy Link Prediction Problem (ProbLog)

data file

evidence(link(n2,n3),true).
evidence(link(n3,n2),true).
evidence(link(n2,n10),true).
evidence(link(n10,n2),true).
evidence(link(n3,n10),true).
evidence(link(n10,n3),true).
. . .
evidence(link(n1,n1),false).
evidence(link(n1,n2),false).
evidence(link(n1,n3),false).
. . .

Example 1
Toy Link Prediction Problem (ProbLog)

command line

> problog lfi model.pl data.pl -O output.pl

> problog -h

> problog lfi -h

Example 1
Toy Link Prediction Problem (cplint)

Load splicover and initialize input theory

:- use_module(library(slipcover)).
:- sc.
:- set_sc(verbosity,3).

:- begin_in.
link(X,Y):0.1 :- red(X), red(Y).
link(X,Y):0.1 :- green(X), green(Y).
link(X,Y):0.1 :- blue(X), blue(Y).
link(X,Y):0.1 :- red(X), blue(Y).
link(X,Y):0.1 :- blue(X), red(Y).
. . .
:- end_in.

NOTE: the value of the
probability is not important,

but necessary for the learning!

Example 1
Toy Link Prediction Problem (cplint)

Background knowledge (if any) and language bias

output(link/2).
input_cw(red/1).
input_cw(green/1).
input_cw(blue/1).

determination(link/2,red/1).
determination(link/2,green/1).
determination(link/2,blue/1).

modeh(*,link(node,node)).
modeb(*,red(-node)).
modeb(*,blue(-node)).
modeb(*,green(-node)).

Example 1
Toy Link Prediction Problem (cplint)

Training data

fold(train,[training_set]).

begin(model(training_set)).
red(n1).
green(n2).
. . .
link(n2,n3).
link(n3,n2).
. . .
neg(link(n1,n1)).
neg(link(n1,n2)).
end(model(training_set)).

Example 1
Let us consider the model again…

Is this really relational learning?

Did we really perform collective classification?

Which rules did spread information among nodes?

Example 2

Hypertext classification (MLN)

Link(page,page)
HasWord(page,word)
Topic(page,topic)

HasWord(p,+w) => Topic(p,+t)
Topic(p,t) ^ Link(p,q) => Topic(q,t)

Example 2

Hypertext classification (ProbLog)

We can use a trick similar to the
use of + for the Alchemy syntax!

t(_)::topic(P,T) :- link(P,Q), topic(Q,T).
t(_,W,T)::topic(P,T) :- hasword(P,W).

Example 2
Now, this model does exploit relational information!

Could we model the same problem with standard
machine learning classifiers (i.e., SVM, NN, RF)?

Yes? No? Maybe?

Example 3

Protein Secondary Structure

Residue(sequence,position,aminoacid)
SecondaryStructure(sequence,position,class)

Residue(s,p,+a) => SecondaryStructure(s,p,+c)

SecondaryStructure(s,p1,c) =>
 SecondaryStructure(s,succ(p1),c)

Example 3
Beware of unwanted (spurious) groundings with MLN!
If the knowledge base contains a predicate such as:

Residue(sequence,position,aminoacid)

then Alchemy will expect ground predicates for all
possible combinations of sequences and positions,
even if a position is not part of a sequence!

This is not important for evidence predicates (since
they are closed world) but for query predicates!

Example 3
For example, with the following database:

Residue(S1,1,C)
. . .
Residue(S1,72,A)
Residue(S2,1,R)
. . .
Residue(S2,66,S)

then Alchemy will also build/expect the query
predicate SecondaryStructure(S2,P72,CLASS)

Example 3

This problem can be circumvented by using the
multipleDatabases option, which allows for
multiple .db files with independent constant sets

With ProbLog and LPAD this problem does not occur
because we perform learning from interpretations:
you basically can have a different interpretation for
each training “world”.

Example 4
Information Retrieval — MLN

InQuery(word)
HasWord(page,word)
Link(page,page)
Relevant(page)

HasWord(p,+w) ^ InQuery(w) => Relevant(p)
Relevant(p) ^ Link(p,q) => Relevant(q)

QUERYx

x
x

Example 4
Information Retrieval

Try to perform weight learning and then inference
with Alchemy with default parameters…

What is the problem?
QUERYx

x
x

Example 4
Information Retrieval

Try to perform structure learning with Alchemy with
default parameters…

What is the problem?
QUERYx

x
x

Example 4
Information Retrieval — ProbLog

t(_)::relevant(P).
t(_)::relevant(P) :- hyperlink(Q,P), relevant(Q).
t(_,W)::relevant(P) :- hasword(P,W), inquery(W).

inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).

Example 4
Information Retrieval — ProbLog

evidence(relevant(p1),true).
evidence(relevant(p2),false).
evidence(relevant(p3),true).
evidence(relevant(p4),true).
evidence(relevant(p5),false).
evidence(relevant(p6),false).

Example 4
Information Retrieval — ProbFOIL (Structure Learning)

% Modes
mode(inquery(+)).
mode(inquery(c)).
mode(hasword(+,c)).
mode(hasword(+,-)).
mode(hyperlink(+,-)).
mode(hyperlink(-,+)).

% Type definitions
base(relevant(page)).
base(hyperlink(page,page)).
base(hasword(page,word)).
base(inquery(word)).

Example 4
Information Retrieval — ProbFOIL (Structure Learning)

% Target
learn(relevant/1).

% How to generate negative examples
example_mode(auto).

Command line

probfoil information_retrieval_settings.pl
information_retrieval_data_full.pl

Example 4
Information Retrieval — cplint (Parameter Learning)

:- use_module(library(slipcover)).
:- sc.
:- set_sc(max_iter,5).
:- set_sc(verbosity,3).

:- begin_in.
relevant(P):0.1 :- hyperlink(Q,P), relevant(Q).
% relevant(P):t(_,W): :- hasword(P,W), inquery(W).
relevant(P):0.1 :- hasword(P,apartment), inquery(apartment).
relevant(P):0.1 :- hasword(P,boston), inquery(boston).
relevant(P):0.1 :- hasword(P,rent), inquery(rent).
:- end_in.

Example 4
Information Retrieval — cplint (Parameter Learning)

:- begin_bg.
inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).
hyperlink(p1,p2).
hyperlink(p1,p3).
:- end_bg.

% Fold definition
fold(train,[train1]).

Example 4
Information Retrieval — cplint (Parameter Learning)

% Language bias
output(relevant/1).

input_cw(hasword/2).
input_cw(hyperlink/2).
input_cw(inquery/1).

determination(relevant/1,hyperlink/2).
determination(relevant/1,hasword/2).
determination(relevant/1,inquery/1).

modeh(*,relevant(page)).
modeb(*,hyperlink(-page,page)).
modeb(*,hasword(-page,word)).
modeb(*,inquery(word)).

Example 4
Information Retrieval — cplint (Parameter Learning)

% Models / Examples
begin(model(train1)).
relevant(p1).
neg(relevant(p2)).
relevant(p3).
relevant(p4).
neg(relevant(p5)).
neg(relevant(p6)).
end(model(train1)).

induce_par([train],P).

Example 4
Information Retrieval — cplint (Structure Learning)

:- use_module(library(slipcover)).
:- sc.

:- set_sc(verbosity,3).
:- set_sc(initial_clauses_per_megaex,3).

:- begin_in.
:- end_in.

:- begin_bg.
:- end_bg.

% Fold definition
fold(train,[train1]).

Example 4
Information Retrieval — cplint (Structure Learning)

output(relevant/1).
input_cw(hasword/2).
input_cw(hyperlink/2).
input_cw(inquery/1).

determination(relevant/1,hyperlink/2).
determination(relevant/1,hasword/2).
determination(relevant/1,inquery/1).

modeh(*,relevant(+page)).
modeb(*,hyperlink(-page,+page)).
modeb(*,hyperlink(+page,-page)).
modeb(*,hasword(+page,-#word)).
modeb(*,inquery(-#word)).

Example 4
Information Retrieval — cplint (Structure Learning)

begin(model(train1)).
inquery(apartment).
inquery(rent).
inquery(boston).
hasword(p1,house).
hasword(p1,rentals).
hasword(p1,massachussets).
. . .
hyperlink(p1,p2).
hyperlink(p1,p3).
hyperlink(p4,p3).
. . .
relevant(p1).
neg(relevant(p2)).
end(model(train1)).

Example 5
Movie recommendation

Will person X like movie M?

0.3::comedy(X) :- movie(X).
0.4::drama(X) :- movie(X).
0.2::friends(X,Y) :- person(X), person(Y).
0.1::likes(X,M) :- person(X), movie(M).

0.3::likes(X,M) :- comedy(M).
0.2::likes(X,M) :- drama(M).
0.3::likes(X,M) :- friend(X,Y), likes(Y,M).

Example 5
person(alice). person(bob).
person(carl). person(david).
movie(bladerunner). movie(thematrix).

friend(alice,bob). friend(bob,alice).
friend(bob,david). friend(david,bob).

likes(alice,bladerunner). likes(bob,bladerunner).
likes(carl,thematrix). likes(david,thematrix).
likes(david,bladerunner).

query(likes(alice,thematrix)).
query(likes(carl,bladerunner)).

Remarks on Complexity

These SRL frameworks are highly expressive and
powerful, but unfortunately they can easily become
memory-intensive and time-consuming

• Try to model the problem differently

• If possible, partition the data

• Reduce the expressivity of the model

Open Challenges

• Efficient inference algorithms

• Scalability

• Structure learning

• Continuous variables/features

Continuous Features
• Hybrid Markov Logic Networks

• Ground-Specific Markov Logic Networks

• DeepProbLog

• Relational Neural Networks

• Learning from Constraints

• TensorLog

• cplint (for inference)

• …

Hybrid MLNs

Introduced in [Wang & Domingos, 2008]

Continuous properties/functions usable as features

Extending MC-SAT and MaxWalkSAT algorithms

(SomeEvidence(x) < 2.3) => SomeQuery(x)
SomeQuery(x) * (SomeEvidence(x) = 1.2)

Ground-Specific MLNs
Introduced in [Lippi & Frasconi, 2009]

Use neural networks to predict the weight of rules

No single weight for each first-order logic formula, but
a different weight for each ground formula

Trained by standard back-propagation!
w1: Node(X,$Features_X) ^ Node(Y,$Features_Y)

=> Link(X,Y)

w2: Node(P,$Features_P) ^ Node(Q,$Features_Q)
=> Link(P,Q)

Ground-Specific MLNs
Predict whether two residues in a protein are linked…

Ground-Specific MLNs
• Perform multiple alignment

• Use the profile of the window as input features

Ground-Specific MLNs
• Re-parametrization of MLN

• Compute each weight as a function of the grounding

Ground-Specific MLNs
• Inference algorithms do not change

• Learning algorithms implement gradient descent

where the first term is computed by MLN inference

and the second term is computed by backprop

DeepProbLog

Introduced in [Manhaeve et al., 2018]

Integrating logical reasoning with neural networks

Symbolic and sub-symbolic representation/inference

Ground neural annotated disjunctions
Output of NNs translated into probabilities (softmax)

End-to-end training with back-propagation

ProbLog and cplint

Remember that also ProbLog and cplint can handle
continuous variables for inference…

More Frameworks

• Knowledge-based artificial neural networks [Towell & Shavlik, 1994]

• Learning from Constraints [Diligenti et al. 2012]

• Lifted Relational Neural Networks [Sourek et al., 2015]

• Logic Tensor Networks [Serafini & d’Avila Garcez, 2016]

• Relational Neural Networks [Kazemi & Poole, 2017]

• TensorLog [Cohen et al., 2017]

• Relational recurrent neural networks [Santoro et al., 2018]

• ???

Data Resources

• https://alchemy.cs.washington.edu/data

• https://linqs.soe.ucsc.edu/data

• http://netkit-srl.sourceforge.net/data.html

• http://cplint.ml.unife.it/

• https://snap.stanford.edu/data/

https://alchemy.cs.washington.edu/data
https://linqs.soe.ucsc.edu/data
http://netkit-srl.sourceforge.net/data.html
http://cplint.ml.unife.it/
https://snap.stanford.edu/data/

MovieLens Dataset
A dataset of movie ratings

• User information (age, sex, occupation, zipcode)

• Movie information (genres, release date)

• Rating information (user, item, rating, timestamp)

BIPARTITE 
GRAPH

Exercise 1

Rating prediction (recommendation)

The aim is to predict the rating a user gives to an item

• Consider past ratings information only

• Consider also user information

• Consider also item information

• How to consider timestamps?

Exercise 2

User classification (profiling)

The aim is to predict some property of a user

• Consider past ratings information only (?)

• Consider also information about other users

• Consider also item information

• How to consider timestamps?

Argumentation Mining

Figure from
[Lippi & Torroni 2016]

Argumentation Mining
The standard pipeline

Figure from
[Lippi & Torroni 2016]

Argumentation Mining
Persuasive Essays corpus labeled with

• Claims, MajorClaims, Premises (components)

• Support/Attack (relations)

• Stance (against/for)

Figure from [Stab & Gurevych 2016]

Argumentation Mining

Figure from [Stab & Gurevych 2016]

Exercise 3

Argument component classification

The aim is to predict the type of argument component

• Consider words in a sentence

• Consider sequence of argument components

• Consider order/position of sentences

Exercise 4
Structure prediction

The aim is to predict the relations between argument
components (i.e., the links in the argument graph)

• Consider words in sentences

• Consider order/position of sentences

• Consider distances between components

• Jointly predict argument components?

Exercise 5
Traffic congestion

Traffic at time T Traffic at time T+1

Exercise 5
Traffic congestion

Traffic at time T Traffic at time T+1

REMEMBER TO
COMPUTE BASELINES!

WHICH ARE GOOD BASELINES?

Exercise 6
Finding communities… IS IT A PARTITION?

OR CAN GROUPS BE OVERLAPPING?

