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Everyone should be able to  
turn data into insights, 

whether ML expert or not

Others and I have a dream
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This poses many deep and
fascinating questions

How can we make ML and AI more tractable?

How can computers reason about and learn with
complex data and knowledge? 

How can computers decide autonomously which
representation and algorithms are best for the
data/problem? 

How can computers understand data with minimal 
expert input?



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Today is the golden era of data
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Arms race to deeply 
understand data
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Bottom line: 
Take your data spreadsheet …
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Probabilistic Graphical Models
Arithmetic Circuits

Gaussian Processes

Boosting

Autoencoder, 
Deep Learning and many more …

Interpretation

t

F (t)

f (t)

Weibull pdf and cdf:

f (t) = bctc-1e-btc

F(t) = 1 - e-btc

therefore:

f (t) = bctc-1 - bctc-1F(t)

thus:
• the Weibull implicitly encodes a subtractive growth process
• growth and decline are polynomial in t
• decline depends on F(t)

Diffusion Models

Distillation/LUPI

Big 
Model Small

Model

teaches
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Big Data Matrix Factorization

Is it really that simple?

… and apply 
Machine Learning
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Research 
question

Data collection 
and preparation

MLDiscuss results

Deployment
Mind the

data science
loop Multinomial? Gaussian? 

Poisson? ...
How to report results? 

What is interesting?

Continuous? Discrete? 
Categorial? …Answer found?
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Kristian Kersting - Thinking Machine Learning

[Lu, Krishna, Bernstein, Fei-Fei „Visual Relationship Detection“ CVPR 2016]

Complex data networks abound

Actually, most data in the world
stored in relational DBs!
Examples not stored in a single table
but in a large graph with attributes!
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So yes, today is the golden era of data …
… for the best-trained, best-funded Machine 
Learning and Artificial Intelligence teams

We have to democratize AI, Machine 
Learning, and Data Science
We have to work on Systems AI, so that 
we know how to rapidly combine, deploy, 
and maintain algorithms
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Let’s say we want to classify 
publications into scientific disciplines
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Support Vector Machines 
Cortes, Vapnik MLJ 20(3):273-297, 1995  

Mathematics is not a 
high-level programming
language!

Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Kersting, Mladenov, Tokmakov AIJ´17, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP´16

Machine Learning Programming

Support Vector Machines 
Cortes, Vapnik MLJ 20(3):273-297, 1995  

Write down SVM in „paper form.“ The machine compiles it into solver form.

Embedded within
Python s.t. loops and 
rules can be used
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But wait, publications are citing 
each other. OMG, I have to use 
graph kernels!

REALLY?
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Kersting, Mladenov, Tokmakov AIJ´17, Mladenov, Kleinhans, Kersting AAAI´17 

No, just add two lines of code!

Citing papers share topics

Write down SVM in „paper form.“ The machine compiles it into solver form.

No kernel, the structure is 
expressed within the constraints!
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To move beyond deep learning, ML, AI and Computational 
Cognitive Science need a crossover with data and 
programming abstractions as well as general reasoning

• High-level languages increase the number of people who 
can successfully build ML/AI applications that involve 
learning and reasoning

• To deal with the computational complexity, we need ways to 
automatically reduce the solver costs

Next 
Generation

Data 
Science

High-level 
languages and 

general 
reasoning

Automated 
reduction of  

computational 
costs

Next 
Generation

ML/AI/
CogSci

Take-away message
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as general reasoning

• High-level languages increase the number of people who 
can successfully build ML/AI applications that involve 
learning and reasoning

• To deal with the computational complexity, we need ways to 
automatically reduce the solver costs

Two parts
1. Lifted Probabilistic Inference and                                     

Tractable Probabilistic Models
2. Statistical Relational Learning and                      

Probabilistic Programming

Roadmap of this tutorial
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Roadmap of Part I

1   Basics of graphical models
2a Exploiting symmetries for inference
2b Deep probabilistic models

Judea Pearl received 2012 the ACM Turing 
Award 2012 for his work on graphical

models
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Application: Speech recognition

Infer the words from spoken language:
Hidden Markov Model

Word

Phonemen

„He ate the cookies on the couch“



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Application: Image Denoising

Infer the original image from the noisy
observed one: Markov networks

Real Pixel Observed Pixel
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Graphical models are omnipresent

Information retrivel, search, collaborative filtering, gene
expression analysis, natural language processing, 
bioinformatics, and many,

many,
many,
many

more!
OK, so what are probabilities and graphical models?
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In a Nutshell, 
Graphical Models are …

… a graphical notation for (conditional) 
independency assumptions and therefore a 
(hopefully) compact specification of probability 
distributions

Bayesian
Networks

Markov
Networks

Factor
Graphs

Nodes= 
Random Variables (RVS)

Edges= 
Dependencies among RVs

Probability
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Discrete Random Variables

Finite set X of possible states

0)( ³ixP 1)(
1

=å
=

n

i
ixP 0

0,1
0,2
0,3
0,4

X1 X2 X3 X4

{ }nxxxxX ,...,,, 321Î

What is the probability that smoking causes cancer?

Smoking

Cancer

no few many

0.800 0.150 0.050

no benigne maligne
0.935 0.046 0.019

OK, but answering the question requires the joint distribution
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Joint Distribution

Probability that X=x and Y=y are “true”

The joint distribution allows us to answer any 
question! But how?

)(),( yYxXPyxP =Ù=º

no benigne maligne
no 0.768 0.024 0.008
few 0.132 0.012 0.006
many 0.035 0.010 0.005Sm

ok
in

g

Cancer
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Make use of basic probability theory

Marginalization

Product rule & conditional probability

Probability that X=x if we have observed Y=y (P(y)>0)

No Benigne Maligne TOTAL

No 0.768 0.024 0.008 0.800

few 0.132 0.012 0.006 0.150

many 0.035 0.010 0.005 0.050

TOTAL 0.935 0.046 0.019

( )å =
=

n

i ixYPYP
1

, )(
S

m
ok

in
g

Cancer

P(cancer)

P
(s

m
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)()|()()|(),( XPXYPYPYXPYXP ==
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Probably the most important rule: Bayes

)()|()()|(),( RPRKPKPKRPKRP ==

)(
),(

)(
)()|()|(

KP
RKP

KP
RPRKPKRP ==

no benigne maligne
no 0.768 0.024 0.008
few 0.132 0.012 0.006
many 0.035 0.010 0.005
TOTAL 0.935 0.046 0.019

P(Krebs)

Since we know already P(R,K) und auch P(K), just divide them.

sm
ok

in
g

cancer
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no benigne maligne
no 0.768/0.935 0.024/ 0.46 0.008/ 0.019

few 0.132/0.935 0.012/ 0.46 0.006/ 0.019

many 0.035/0.935 0.010/ 0.46 0.005/ 0.019

TOTAL 0.935 0.046 0.019

sm
ok

in
g

cancer

P(cancer)

)()|()()|(),( RPRKPKPKRPKRP ==

)(
),(

)(
)()|()|(

KP
RKP

KP
RPRKPKRP ==

Probably the most important rule: Bayes
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no benigne maligne
no 0.821 0.522 0.421

few 0.141 0.261 0.316

many 0.037 0.217 0.263P
(s

m
o

ki
n

g
|

cancer= … )

As long as all entries are >0, everything can be 
computed! Mission completed?

)()|()()|(),( RPRKPKPKRPKRP ==

)(
),(

)(
)()|()|(

KP
RKP

KP
RPRKPKRP ==

Probably the most important rule: Bayes
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No!! Our mission has just started

Joint distribution is enumerating everything
§Worst-case run time: O(2n)

§ n = # of RVs
§Space is O(2n)  too

§Size of the table of the joint distribution

Main idea: make use of independencies to 
compress the representation
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Indpendency

(Current) age and the gender of a person
are independent )()(),( APGPAGP ×=

)()|( APGAP =
)()|( GPAGP =

You would not give me money for information on the gender 
to know the age of a person!

GenderAge
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Conditional Independence

Cance is independent of age and gender, if the
person smokes.

If you have not observed anything,age and gender
are independent.

P(C | S,G,A) = P(C | S)

GenderAge

Smoking

Cancer

Less entries, therefore lower 
complexity
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Bayesian Networks

Set of random variables
Directed, acyclic graph (DAG)
To each RV Xi we associate the
conditional probabilitiy distribution: 

The joint distribution is

Local Markov Assumption

X1,…,Xn{ }

P X1,…,Xn( ) = P Xi | Pa Xi( )( )i=1

n
∏

Each RV X is independent of ist „non-descendant“ given
ist parents (Xi ⊥ nonDescendants| PaXi)

( )( )| Pai iP X X

S

N H

A F

[Pearl 1989]

BN semantics
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Example

CancerSmokingR ∈ no, few,many{ }

K ∈ no,benigne,maligne{ }

P( S=n) 0.80

P( S=f) 0.15

P( S=m) 0.05

Smoking= n f m

P( C=n) 0.96 0.88 0.60

P( C=b) 0.03 0.08 0.25

P( C=m) 0.01 0.04 0.15

But how do we do inference?
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Query:

Definiton of conditional probability

Up to normalization
Hence, this rewrites to

What is Inference?

Kristian Kersting 
Schlussfolgern unter Unsicherheit

( ) ( )( )å ÕÏ =
=

Y
Y

iX

n

i ii XXPP
1

Pa|
BN semantics

Marginalization

Main observation: S and ∏ commute
S a(P1 x P2) = (S a P1 ) x P2 if A is not in P2



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Complete example: Let’s comput P(L) 
elimination order is : G,A,V,R,K

Smokes

GenderAge

Cancer

Lung
Tumor

Serum-
calzium

Poisoned

x

P(A,G,R)

P(A) P(R | A,G)P(G)

P(A,S)S
G

S
P,S P(C)

P(L | C) x P(C,L) S
C

P(L)

Exponentiall in the size of the largest (induced) factor 
(table) also called treewidth: 23 vs 27

P(P,S)S
A

P(A,V,S)

P(P | A)

x

P(C | P,S)

P(P,S,C)
x
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As an algorithm, this is called: 
Variable elimination
Given a BN and a query P(X|e) / P(X,e)

Instantiate evidence e
Choose an elimination order over the variables, e.g., X1, …, Xn

Initial factors {f1,…,fn}: fi = P(Xi|PaXi) (CPT for Xi)

For i = 1 to n, if Xi Ï{X,E}

§ Collect factors f1,…,fk that include Xi

§ Generate a new factor by eliminating Xi from these factors

§ Variable Xi has been eliminated! Add g to the set of factors

Normalize P(X,e) to obtain P(X|e)
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What have we learned so far?

Uncertainty is omnipresent

Uncertainty can be captured using probability distributions

Graphical models are compact encodings of probability
distributions

They lead to „efficient“ algorithms for inference such as
Variablen-Elimination
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Mission Completed? No …

Theorem: Inference (even approximate) in Bayesian
networks is NP-hard (#P; via reduction to 3-SAT)

...)()( 432321 ÙÚÚÙÚÚ XXXXXX

1C 2C nC
X1 X2 X3 X4 Xm

C1 C2 Cn

0.5/0.5 prior

True with prob 1 iff
clause 1 is satisfied True with prob 1 iff

clauses i and i-1 are satisfied

Y

P(Y=t)>0 iff 3-SAT
formula is satisfiable
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P
NP

NP-
Complete
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What have we learnt about 
Bayesian networks?

§ Bayesian networks (BNs) encode joint distributions
§ They are DAGs 

(nodes =  RVs, edges = dependencies)

§ Inference is NP-hard
§ Variable Elimination is one of the most basic 

inference approaches; there are many other 
inference approaches

§ We have skipped learning BNs



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Roadmap of the course

1   Basics of graphical models
2a Exploiting symmetries for inference
2b Sum-product networks
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Guy van den Broeck
UCLA
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Guy van den Broeck
UCLA
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Guy van den Broeck
UCLA
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Faster modelling
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Crossover of ML/AI with data & 
programming abstractions

ScalingUncertainty

Databases/
Logic

Data
Mining 

De Raedt, Kersting, Natarajan, Poole, Statistical Relational 
Artificial Intelligence: Logic, Probability, and Computation. Morgan 
and Claypool Publishers, ISBN: 9781627058414, 2016.

increases the number of people who can 
successfully build ML/AI applications

make the ML/AI expert more effective
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Not convinced? LogicBlox, RelationalAI, Apple 
and Uber invest(ed) hundreds of millions of 
dollars into this AI/ML Systems view
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Guy van den Broeck
UCLA

What about inference?
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Guy van den Broeck
UCLA

No independencies. 
Fully connected. 

22704 states
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Guy van den Broeck
UCLA

A machine will not 
solve the problem
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Faster modelling

Faster solvers
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Big
Model

Run Solver

Small

Model

automatically
compressed

Run Solver

[Mladenov, Ahmadi, Kersting AISTATS´12, Grohe, Kersting, Mladenov, Selman ESA´14,
Kersting, Mladenov, Tokmatov AIJ´17]

Like „-O“ flags known from compilers:
Let the AI machine figure out computational symmetries

If exchanging two variables 
preserves optimality, group 

them together
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Color nodes initially with the same color, 
say red

Color factors distinctively according to
their equivalences. For instance, assuming
f1 and f2 to be identical and B appears at the
second position within both, say blue

[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]

Compression: Coloring the graph
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Compression: Pass colors around

1. Each factor collects the colors of its neighboring nodes

[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]
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1. Each factor collects the colors of its neighboring nodes
2. Each factor „signs“ its color signature with its own color

Compression: Pass colors around
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]
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1. Each factor collects the colors of its neighboring nodes

2. Each factor „signs“ its color signature with its own color

3. Each node collects the signatures of its neighboring factors

Compression: Pass colors around
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]
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1. Each factor collects the colors of its neighboring nodes
2. Each factor „signs“ its color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures

Compression: Pass colors around
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]
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1. Each factor collects the colors of its neighboring nodes
2. Each factor „signs“ its color signature with its own color
3. Each node collects the signatures of its neighboring factors
4. Nodes are recolored according to the collected signatures
5. If no new color is created stop, otherwise go back to 1

Compression: Pass colors around
[Kersting, Ahmadi, Natarajan UAI’09; Ahmadi, Kersting, Mladenov, Natarajan MLJ’13, Mladenov, Ahmadi, Kersting AISTATS´12, 
Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17]



Why does this work?



Why does this work?

Approximate probabilistic   
inference closely connected to LPs

Marginal Polytope

Relaxed Polytope

Objective Function
Symmetrized Subspace

Li
fte

d 
Po

lyt
op

e

[Mladenov, Globerson, Kersting UAI ´14, AISTATS ´14, Mladenov, Kersting UAI ´15]
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Compute Equitable
Partition (EP) of the
LP using WL

Intuitively, we group together variables resp. 
constraints that interact in the very same way 
in the LP. 

9 

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

IntuiCvely,$we$group$together$variables$
resp.$constraints$that$interact$in$the$
very$same$way$in$the$LP.$
$

Figure 7: Using symmetry to speed up linear programming: (a) the feasible region of LP

and the objective vector (in pink); (b) the span of the fractional automorphism of the LP

(grey); (c) the lifted LP is obtained by projecting the feasible region onto the span of the

fractional automorphism.

5.2. Equitable Partitions and Fractional Automorphisms

Let L = (A,b, c) be an LP withA 2 Rm⇥n, that is, we havem constraints
and n variables. In the following, we aim to partition the variables and
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If$we$fix$any$class$of$constraints$Q,$then$the$
number$of$constraints$in$Q$where$an$LP$
variable$i$in$P$parCcipates$with$coefficient$c$
should$be$equal$for$all$other$j$in$P.$$$

Compute$Equitable$
Par++ons$of$the$LP$
using$WL$

Frac+onal$Automorphsims$of$LPs$
The$EP$induces$an$fracConal$automorphism$of$
the$coefficient$matrix$
$
$
where$$$$$$$$$$and$$$$$$$$$$are$doubly6stochas+c$
matrices$(relaxed$form$of$automorphism).$
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(XQ)ij =
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Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the 
coefficient matrix A

where XQ and Xp are doubly-stochastic matrixes (relaxed form of automorphism)
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Fractional Automorphisms
Preserve Solutions

If x is feasible, then Xpx is feasible, too.

By induction, one can show that left-multiplying with a 
double-stochastic matrix preserves directions of 
inequalities; they are averagers. Hence,
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If x* is optimal, then Xpx* is optimal, too.
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Frac+onal$Automorphisms$
Preserve$Solu+ons$

If$$$$$$$is$op+mal,$then$$$$$$$$$$$$$$is$op+mal,$too.$
Since$by$construncCon$$$$$$$$$$$$$$$$$$$$$$$$$$$and$hence$$

XPx
⇤x⇤

cT (XPx) = cTx

cTXP = cT

What$have$we$established$so$far?$

Instead$of$considering$the$original$LP$$
$
it$is$sufficient$to$consider$
$
$

i.e.$we$„average“$parts$of$the$polytop.$$$$
$

(A,b, c)

(AXP ,b,XP
T c)

But$why$is$this$dimensionality$reduc+on?$

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

XP

XP = BBT

Dimensionality$Reduc+on$
The$doubly7stochasCc$matrix$$$$$$$$$can$be$wriren$
as$$
$
$
Since$the$column$space$of$B$is$equivalent$to$the$
span$of$$$$$$$$$,$it$is$actually$sufficient$to$consider$
only$$
$

BiP =

(
1p
|P |

if vertex i belongs to part P ,

0 otherwise.

(ABP ,b,B
T
P c)

XP

XP = BBT

XP

Fractional Automorphisms
Preserve Solutions
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i.e. we “average” parts of the polytope.
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Dimensionality Reduction
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This is of reduced size, and actually we can also drop
any constraint that becomes identical



WL induces a Fractional
Automorphism of the LP

Feasible region 
of LP and the 
objective vectors

Span of the fractional 
auto-morpishm of the LP

Projections of the feasible 
region onto the span of 
the fractional auto-
morphism
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The more observed the more lifting
Faster end-to-end even in the light of Gurobi‘s fast pre-solving heuristics

Grohe, Kersting, Mladenov, Selman ESA´14, Kersting, Mladenov, Tokmatov AIJ´17
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Margout‘s
ILPs with

symmetries
(relaxed)
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Reparameterized BP ?
Reparameterized
Lifting as preprocessing
Run any existing MP solver

RMPLP

RCE

LBP

LCE

BP

Modified MP

Beliefs

Pseudo Beliefs
MAP-LP Standard Lifted

MPLP 
and Co

Concave 
energies

LMPLP

Lifted probabilistic 
inference

Inference in a smaller, 
reparameterized model

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]

=
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BTW, this also works for 
Convex Quadratic Programs

Citing papers should be on the same side of the hyperplane

Reduce the QP by running Weisfeiler-Lehman on the QP-Graph

CORA entity resolution

3.
6%

6.
4%

the higher, the better
On par with state-of-the-art 
by just few lines of code

(1) A relational language for QPs

(2) Lifted inference for convex QPs

[Mladenov, Kleinhans, Kersting AAAI 2017]
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Industrial Strength Solvers such as 
CPLEX and GUROBI are deploying this
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What have we learnt about 
lifted inference?

§ Learning (rich) representations is a central problem of 
machine learning

§ (Fractional) symmetry / group theory provide a natural 
foundation for learning representations

§ Symmetries = “unimportant” variants of data (graphs, 
relational structures, …)

§ “Unimportant” variants get grouped together

However, inference and modelling are still “hard”
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For Systems AI we have to provide a set of 
tools for understanding data that require 
minimal expert input

The Automatic Statistician
A system which explores an open-
ended space of statistical models
to discover a good explanation of
the data, and then produces a 
detailed report with figures and
natural-language text

Llyod, Duvenaud, Ghahramani
U. Cambridge

Grosse, Tenenbaum
MIT

Only regression so far!
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For Systems AI we have to provide a set of 
tools for understanding data that require 
minimal expert input

Instead of starting with an empty notebook …



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

For Systems AI we have to provide a set of 
tools for understanding data that require 
minimal expert input

the machine automatically compiles one for you!
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Deep Neural Networks

Potentially much more powerful than shallow
architectures, represent computations [Bengio, 2009]

But …
§ Often no probabilistic semantics
§ Learning requires extensive efforts
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Deep Neural Networks

Deep neural networks may not be faithful probabilistic models
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Can we borrow ideas from 
deep learning for probabilistic 
graphical models? 

Judea Pearl, UCLA
Turing Award 2012
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Adnan 
Darwiche
UCLA

Pedro 
Domingos

UW

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2

Deep Probabilistic Modelling
using Sum-Product Networks

Computational graph
(kind of TensorFlow
graphs) that encodes
how to compute
probabilities

Inference is Linear in Size of Network
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Alternative Representation: 
Graphical Models as Deep Networks

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × I[X1=1] × I[X2=1]
+ 0.2 × I[X1=1] × I[X2=0]
+ 0.1 × I[X1=0] × I[X2=1]
+ 0.3 × I[X1=0] × I[X2=0]
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X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × I[X1=1] × I[X2=1]
+ 0.2 × I[X1=1] × I[X2=0]
+ 0.1 × I[X1=0] × I[X2=1]
+ 0.3 × I[X1=0] × I[X2=0]

Alternative Representation: 
Graphical Models as Deep Networks
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Shorthand for Indicators

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(X) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾
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Sum Out Variables

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3

P(e) = 0.4 × X1 × X2

+ 0.2 × X1 × X2

+ 0.1 × X1 × X2

+ 0.3 × X1 × X2

¾

¾

¾ ¾

e: X1 = 1

Set X1 = 1, X1 = 0, X2 = 1, X2 = 1
¾ ¾

Easy: Set both indicators of X2 to 1
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Idea: Deeper Network Representation 
of a Graphical Model that encodes 
how to compute probabilities

Ä

Å
0.4

Ä Ä Ä
0.2 0.1

0.3

¾
X1 X2X1

¾
X2

X1 X2 P(X)

1 1 0.4

1 0 0.2

0 1 0.1

0 0 0.3
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*SPNs are an instance of Arithmetic Circuits (ACs). ACs have 

been introduced into the AI literature more than15 years ago as a 

tractable representation of probability distributions 

[Darwiche CACM 48(4):608-647 2001]

Sum-Product Networks* (SPNs)
[Poon, Domingos UAI 2011]

A SPN S is a rooted DAG where:

Nodes: Sum, product, input indicator

Weights on edges from sum to children

Å

Ä

Å
0.7 0.3

¾
X1 X2

Å ÅÅ

Ä

0.80.30.1
0.20.70.90.4

0.6

X1
¾
X2
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Deep Probabilistic Inference Units
[Sommer, Oppermann, Molina, Binnig, Kersting, Koch TPM@ICML 2018, ICCD 2018]

SPNs can be compiled into 
flat, library-free code suitable 

for embedding in real-time 
applications and devices
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And also learning is 
conceptually easy

Random 
sum-
product 
networks

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]
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And also learning is 
conceptually easy

[Stelzner, Peharz, Kersting 2018]
Explicit AIR

[Eslami et al. NIPS 2016]

Attend Infer Repeat (AIR)
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[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17, Molina et al AAAI ‚18]

Word
D

oc
um

en
ts

Word Counts

Or you do greedy learning
Testing independence of random 
variables using e.g. nonparametric tests

In general use the
independency test for 
your random variables 
at hand such as g-test 
for Gaussians
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[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI´17, Molina et al AAAI ‚18]

Word
D

oc
um

en
ts

Word Counts

Learn GLM model
trees for P(x|V-x) and
P(y|V-y). Check 
whether X  resp. Y is
significant in P(y|V-x) 
resp. P(x|V-y)

In general use the
independency test for 
your random variables 
at hand such as g-test 
for Gaussians

Testing independence of random 
variables using e.g. nonparametric tests

Or you do greedy learning
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Word

D
o
c
u
m

e
n
ts

Testing independence of random 

variables using e.g. nonparametric tests

Word Counts

*

Random splits

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI’17, Molina et al AAAI ‚18]]

In general some

clustering for your

random variables at

hand such as kMeans

for Gaussians

Or you do greedy learning
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Word
D

oc
um

en
ts

Random splits

Word Counts

*

+ +

keep growing 
alternatingly * 
and + layers

[Poon, Domingos UAI’11; Molina, Natarajan, Kersting AAAI`17, Molina et al AAAI ‚18]

Testing independence of random 
variables using e.g. nonparametric tests

Or you do greedy learning
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Probabilistic modelling made easy:  
Build multivariate distribution by stacking 
univariate ones

Poisson Mutual Information 

(NIPS corpus)

Poisson Multinomial SPN

= hierachical topic model

[Molina, Natarajan, Kersting AAAI 2017]
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… even in a distribution-agnostic way
[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Use nonparametric 
independency tests 

and piece-wise linear 
approximations

Visualization the gist of a
Mixed SPN (learned on the
hybrid Autism dataset) using
normalized mutual info (the
thicker, the higher). The
machine does not know
anything about the data
types.
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… even in a distribution-agnostic way
[Molina, Natarajan, Vergari, Di Mauro, Esposito, Kersting AAAI 2018]

Use nonparametric 
independency tests 

and piece-wise linear 
approximations

Visualization the gist of a
Mixed SPN (learned on the
hybrid Autism dataset) using
normalized mutual info (the
thicker, the higher). The
machine does not know
anything about the data
types.

However, we have to provide the 
statistical types and do not gain insights 
into the parametric forms of the variables. 
Are they Gaussians? Gammas? …
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Automatic Bayesian Density Analysis
[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera TPM@ICML 2018]

Bayesian discovery of
statistical types and
parametric forms of
variables

Type-agnostic deep
probabilistic learning+
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Automatic Bayesian Density Analysis

… can automatically discovers the statistical 
types and parametric forms of the variables

[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera TPM@ICML 2018]
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Automatic Bayesian Density Analysis

… but also models its uncertainty about the 
statistical types and parametric forms, which  
can lead to better models

[Vergari, Molina, Peharz, Ghahramani, Kersting, Valera TPM@ICML 2018]
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The machine understands the data 
with few expert input …

…and can compile data reports automatically

Völker: “DeepNotebooks –

Interactive data analysis

using Sum-Product

Networks.“ MSc Thesis, 

TU Darmstadt, 2018

Exploring the Titanic dataset

This report describes the dataset Titanic and contains
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The machine understands the data 
with no expert input …

…and can compile data reports automatically

Explanation 

vector* 
(computable in 

linear time in the

sizre of the SPN) 

showing the
impact of
"gender" on the

chances of
survival for the

Titanic dataset

*[Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, Müller JMLR 11:1803-1831, 2010]
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What have we learnt about SPNs?

Sum-product networks (SPNs)
• DAG of sums and products
• They are instances of Arithmetic Circuits (ACs)
• Compactly represent partition function
• Learn many layers of hidden variables

Efficient marginal inference
Easy learning
Can outperform well-known alternatives
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Take-away messges of Part I

• Graphical models are great to deal with probability
distributions

• To make them „tractable“ we can employ symmetries
• Or we build directly „tractable“ graphical models, i.e., 

computation graphs as in TensorFlow but with
probabilistic semantics

• This can lead to inference on the device and can free the
user from making assumptions on the statistical form of 
the data



Lifted Statistical Machine Learning
Computational modeling of complex AI systems
that learn and think

Symbolic 
Complexity 

Structure  
Logic 

Abstraction 
Resolution 

Generalization 
Modules 

 

Numeric 
Noise 
Probabilities 
Values 
Graphical  
Expectation 
Optimization 
Regularization 

A 

E 

Thanks to Babak Ahmadi, Vincent Conitzer, Rina 
Dechter, Luc De Raedt, Pedro Domingos, Peter 
Flach, Dieter Fensel, Florian Ficher, Vibhav Gogate, 
Carlos Guestrin, Daphen Koller, Nir Friedman, 
Martin Mladenov, Ray Mooney, Sriraam Natarajan, 
David Poole, Fabrizio Riguzzi, Dan Suciu, Guy van 
den Broeck, and many others for making their slides
publically available

Kristian 
KerstingPart II: Statistical Relational AI
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Goals of Part II

Get in touch with
1. Statistical Relational Learning and

Probabilistic Programming, and
2. understand that this covers the whole

AI spectrum, leading to Systems AI

Caution! Necessarily incomplete!
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Let’s consider a simple relational 
domain: Reviewing Papers

The grade of a paper at a conference 
depends on the paper’s quality and the 
difficulty of the conference.

§Good papers may get A’s at easy 
conferences

§Good papers may get D’s at top conference
§Weak papers may get B’s at good 

conferences
§…
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(Reviewing) Bayesian Network

P(Qual)
low middle high
0.3 0.5 0.2

P(Diff)
low middle high
0.2 0.3 0.5

Qual Diff
P(Grade)
c b a

low low 0.2 0.5 0.3
low middle 0.1 0.7 0.2

...

( ) ( )1 1 11
, , , ,n

n i ii
P X X P X X X-=

=Õ! !

Random Variables

Direct Influence
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The real world, however,  …
… has inter-related objects

Paper1 Diff_AAAI

Grade_Paper1_AAAI

Paper2 Diff_AAAI

Grade_Paper2_AAAI

Paper2 Diff_IJCAI

Grade_Paper2_IJCAI

These ‘instance’ are not independent !

[inspired by Friedman and Koller]



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

Therefore we want to combine 
probabilities and logic 
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Systems AI: the computational and mathematical 
modeling of complex AI systems.

Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes”, Stanford Graduate School of Business, May 2, 
2017.https://www.youtube.com/watch?v=vbb-AjiXyh0. But also see e.g. Kordjamshidi, Roth, Kersting: “Systems AI: A 
Declarative Learning Based Programming Perspective.“ IJCAI-ECAI 2018.
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For Systems AI we have to deeply 
understand data, knowledge and reasoning 
in a large number of forms

ScalingUncertainty

Databases/
Logic

Statistical 
AI/ML

De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and 
Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

increases the number of people 
who can successfully build AI/ML 
applications

make the AI/ML expert more 
effective

building general-purpose thinking 
and learning machines 

Crossover of Statistical AI/ML with data & 
programming abstractions
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Data and Feature 
Programming

(Un-)Structured 
Data Sources

External Databases

Data Tables

Declarative Probabilistic 
Programming and Learning

Statistical AI 
Knowledge Base

(data, weighted rules, loops and data structures)
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Graph Kernels
Diffusion Processes
Random Walks
Decision Trees
Frequent Itemsets
SVMs
Graphical Models
Topic Models
Gaussian Processes
Autoencoder
Matrix and Tensor
Factorization
Reinforcement Learning
…

[Ré et al. IEEE Data Eng. Bull.’14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP’14; Natarajan, Soni, Wazalwar, 
Viswanathan, Kersting Solving Large Scale Learning Tasks’16, Mladenov,  Heinrich, Kleinhans, Gonsior, Kersting DeLBP’16, …]

This establishes a novel “Deep AI”

Feature 
Rules

Symbolic-Numerical
Engine

Inference
Results

p

0.9

0.6

Feedback/AutoML
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Machine Learning can be seen as an expanding
and evolving network of ideas, scholars, and
papers. Can machines read this data?

Fortunato et al. „Science of science“. 
Science 359(6379) 2018
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Introduced algorithms are mentioned in the abstract

Algorithms mentioned in experiments have been 
compared to the introduced one

Benjamin generates the ML Genome

The Machine Learning (ML) Genome is a 
dataset, a knowledge base, an ongoing effort 
to learn and reason about ML concepts

Algorithms

Compared to

[Bratzadeh. MSc Thesis TU Dortmund  2016] 
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And connects well to database theory

Jim Gray Turing Award 1998

“Automated Programming” 
Mike Stonebraker Turing Award 2014 

“One size does not fit all” 
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… and cognitive science

Lake, Salakhutdinov, Tenenbaum, Science 350 (6266), 1332-1338, 2015
Tenenbaum, Kemp, Griffiths, Goodman, Science 331 (6022), 1279-1285, 2011

"How do we humans get so much from so little?" and by that I 
mean how do we acquire our understanding of the world 
given what is clearly by today's engineering standards so little 
data, so little time, and so little energy.

Josh Tenenbaum
“Bayesian Program Learning” 
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SO WHAT ARE RELATIONS?

But first let us clarify how people view 
relations in this context
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What are Relations?
There are several types of relations and in turn 
there are several views on what (statitical) 
relational learning is

1. Relations provide additional correlations/ 
regularization
§ If two words occure frequently in the same context (page, 

paragraph, sentence, …) then there must be some semantic
relation between them

2. Often extensional (data) only, for one relation
§ Covariance function, distance functions, kernel functions, 

graphs, tensors, random walks with restarts…
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What are Relations?

3. Relations are symmetries/redundancies in the
model

§ E.g. lifted inference based on bisimulation

4. Hypergraph representations of data
§ Multiple (extensional) relations
§ Random walks with restarts as similarity measure, produce

path features, tensor-based embeddings
5. Full-fledged relational (or logical) knoweldge as

considered in this tutorial
§ Multiple (often typed) relations
§ Intensional formulas (often Horn clauses)     ancestor(X,Z) ^ 

parent(Z,Y) ⇒ ancestor(X,Y)
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KEY REPRESENTATION DIMENSIONS

Easy to miss the big picture but thankfully they all can be structured 
along some

THE SRL ALPHABET SOUP
Over the years many SRL frameworks have been proposed:
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Key Dimensions with some prototypes
directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPsCLP(BN)
RGPs

IHRMLPAD

BLOG
RDN

BUGS

RBNs

ICL
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Directed: Probabilistic Relational Models (PRMs)
Bayesian logic Programs (BLPs) 

( , ) ( ) _ ( )
_ ( ) ( )

x author x p smart x high quality p
x high quality p accepted p

" Ù Þ
" Þ

[Getoor et al. 2002; Kersting, De Raedt 2007]

high_quality/1

author/2 smart/1

Rule Graph

accepted/1

Predicates

high_quality

smart

P

author

X

......
yes(0.9,0.1)

smart(X)high_quality(P)

Placeholders Atoms

Macro for conditional probability table

Deterministic
background
knowledge

Probabilistic rule
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Inference on BN constructed by instantiating the 
rules/ macros using back- or forward chaining

smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

high_quality(p2)

author(bob,p2)

accepted(p2)

So, we can deal with a variable number of objects. The induced BN 
depends on the domain elements and the background knowledge 
we have.



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

high_quality(p2)

author(bob,p2)

accepted(p2)

But what happens if we also have author(bob,p1)?

author(bob,p1)

So, we can deal with a variable number of objects. The induced BN 
depends on the domain elements and the background knowledge 
we have.

Inference on BN constructed by instantiating the 
rules/ macros using back- or forward chaining
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smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

Directed: Aggregate Dependencies
We have several conditional probabilities instantiated from the same 
clause, which we have to aggregate
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smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

Directed: Aggregate Dependencies
We have several conditional probabilities instantiated from the same 
clause, which we have to aggregate

sum, min, max, 
avg, mode, count

aggr

8.02.0
1.09.0

f
t

P(HQ | A)A

Still, the induced model is assumed to be acyclic
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Option 1 : Relational Dependency Networks (RDNs)
( , ) ( ) _ ( )
_ ( ) ( )

, _ ( , ) ( ) ( )
, ( , ) ( , ) _ ( , )

x author x p smart x high quality p
x high quality p accepted p
x y co author x y smart x smart y
x y p author x p author y p co author x y

" Ù Þ
" Þ
" Ù Þ
" $ Ù Þ

cyclic
dependency

high_quality/1

co-author/2 smart/1

accepted/1

smart

smart

Y

co_author

X
author/2

Run approximate Gibbs 
sample

[Neville, Jensen 2007]
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smart(alice)

high_quality(p1)

author(alice,p1)

accepted(p1)

smart(bob)

author(bob,p1)

co_author(alice,bob) co_author(bob,alice)

aggr

Run approximate Gibbs 
sample

Option 1 : Relational Dependency Networks (RDNs)
[Neville, Jensen 2007]
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( )
),(_),(),(,

)()(),(_,
)()(_

)(_)(),(

yxauthorcopyauthorpxauthorpyx
ysmartxsmartyxauthorcoyx

pacceptedpqualityhighx
pqualityhighxsmartpxauthorx

ÞÙ$"
ÛÞ"

Þ"
ÞÙ"

¥
2.1
1.1
5.1

Suppose we have constants: alice, bob and p1

[Richardson, Domingos MLJ 62(1-2): 107-136, 2006]

Option 2: Markov Logic Networks

smart(bob)smart(alice)

high_quality(p1)

author(p1,alice) author(p1,bob)

accepted(p1)

co_author(bob,alice) co_author(alice,bob)

co_author(alice,alice) co_author(bob,bob)

Compile to an undirected model
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Key Dimensions with some prototypes
directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPsCLP(BN)
RGPs

IHRMLPAD

BLOG
RDN

macro proofs
MLNs BLPs ProbLogIHRM

PRMs

BLOG

RDN PRISM
SLPs

LPADRGPs

BUGS

RBNs

ICL

ICL

RBNs
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ProbLog

Label of a clause/fact c is the probability that c belongs to the target 
program; Facts/clauses independent of each other

Defines a distribution over programs

0.10 :: edges(x_gene, disease2)
0.66 :: edge(x_gene, disease1)
0.39 :: edges(disease1,disease2)

path(X,Y) :- edge(X,Y)
path(X,Y) :- edges(X,Z), path(Z,Y)

disease2

disease1

X_gene
0.39

0.10

0.66

disease2

disease1

X_gene

disease2

disease1

X_gene

disease2

disease1

X_gene
0.39

disease2

disease1

X_gene
…

P=0.1*0.66*0.39 + P=(1-0.1)*0.66*0.39 ...

P=(1-0.1)*(1-0.66)*0.39

+ P=0.1*0.66*(1-0.39)

P(path(x_gene,disease2) )=  sum of probs of all programs that entail the query

Exponentially many subprograms! To avoid explosion, 
consider proofs/paths only + store them e.g. in a BDD in 
order to count correctly
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Many other dimensions!!
directed undirected

PRMs

MLNs

ProbLog

RMNs
BLPs

PRISM

SLPsCLP(BN)
RGPs

IHRMLPAD

BLOG
RDN

macro proofs
MLNs BLPs ProbLogIHRM

PRMs

BLOG

RDN PRISM
SLPs

LPADRGPs

parametric non-parametric

MLNs
BLPs

ProbLog
IHRM

PRMs

BLOG
RDN PRISMSLPs
LPAD RGPs

NP-BLOG

CWA OWA

MLNs
BLPs

ProbLog

IHRM

PRMs
BLOGRDN PRISMSLPs

LPAD

RGPs

NP-BLOG

MEBNs

BUGS

RBNs

ICL

ICL

RBNs

RBNs

ICL

RBNs

ICL
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And actually they span the whole AI 
spectrum

Relational topic models

Mixed-membership models

Relational Gaussian processes

Relational reinforcement learning

(Partially observable) MDPs

Systems of linear equations

Kalman filters

Declarative information networks
…

So, should we worry about the soup?
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This soup boiled down to Graphical Models
as intermediate representation

There is an edge between a circle and a box if the variable is in the
domain/scope of the factor

unnormalized !

Random variable

Factor resp. potential

Distributions can naturally be represented as Factor Graphs
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Factor Graphs from Graphical Models

Similar “boiling down” process is going on in StarAI! 
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Boiled-Down SRL Alphabet Soup

Given a relational model in your language of choice, a 
set of constants and a query, compile everything into
an intermediate respresentation

§(logically parameterized) Factor graphs
§BDDs, Artihmetic Circuits, d-DNNFs, …
§Weighted CNFs

Run (lifted) inference
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Rules + Potential: Logically Parameterized Factors 
(parfactors) [Poole 2003; de Salvo Braz et al. 2005,…]

"X. f1(popular, attends(X)) 

"X. f2(attends(X), series) 

…

popular

start series

attends(p1) attends(p2) attends(pn)

Atoms represent a set of 
random variables

Logical Variables 
parameterize RV

Parfactors
parameterized factors There can also be contraints to 

logical variables such as 
X=/=ACAI2018
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[Domingos et al.; Van den Broeck et al. and many others]

Rules + Weights: Weighted CNF
Weighted MAX-SAT as mode finding for log-linear distributions
Each configuration has a cost: the sum of the weights of the 

unsatisfied (ground) clauses.
An infinite cost gives a ‘hard’ clause. 
Goal: find an assignment with minimal cost.

( ) ( )!"!#$!"!#$
ba

z¬xyx ÚÙÚ

Weigthed CNF
x y z

a b

Factor Graph:

x y  fa(x,y)
0 0   0
0 1   w1
1 0   w1
1 1   w1

x z  fb(x,z)
0 0   w2
0 1   w2
1 0   0
1 1   w2

w1 w2
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Rules + Weights: Knowledge Compilation

[Darwiche et al.; Van den Broeck et al. and many others]

d-DNNF
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And even low-level C/C++ programs

[Pfeffer et al., Poole et al. and many others]
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What have we learnt so far in Part II?

There are several ways to specify relational 
probabilistic models

The goal is not to have a probabilistic 
characterization

Exising Frameowrks highlight different aspects of 
relational modeling

Semantically this soup boiled down to weighted 
CNFs, factor graphs, parfactors, diagrams and 
even program code
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Goals
§Parameter Estimation

§(Vanilla) relational learning approach

§nFOIL, Hypergraph Lifting, and Boosting

How do we learn relational 
models?
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PARAMETER ESTIMATION FOR 
RELATIONAL MODELS
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Relational Parameter Estimation

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

+
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Relational Parameter Estimation

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

+

Parameter tying
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So, we can apply „standard“ EM

bt

pc mc

Person

bt

pc mc

Person

mc

pc mc

Person

mother

Mother

mc

pc mc

Person

mother

Mother

pc

pc mc

Person

father

Father

pc

pc mc

Person

father

Father

bt/1

pc/1 mc/1

bt/1

pc/1 mc/1

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Model(1)
pc(brian)=b,

bt(ann)=a,

bt(brian)=?,

bt(dorothy)=a

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Background

m(ann,dorothy),

f(brian,dorothy),

m(cecily,fred),

f(henry,fred),

f(fred,bob),

m(kim,bob),

...

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(2)
bt(cecily)=ab,

bt(henry)=a,

bt(fred)=?,

bt(kim)=a,

bt(bob)=b

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?

Model(3)

pc(rex)=b,

bt(doro)=a,

bt(brian)=?Initial Parameters q0

Logic Program L

Expected counts of a clause

Expectation 

Inference 

Update parameters 
(ML, MAP)

Maximization 

iterate until convergence

Current
Model
(M,qk)

P( head(GI), body(GI) | DC )MM

DataCase DCGround Instance
GI

P( head(GI), body(GI) | DC )MM

DataCase DCGround Instance
GI

P( body(GI) | DC )MM

DataCase DCGround Instance
GI
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Generative Learning
f (w) = wini (x)

i
∑ − logZ

Z = exp wini (x ')i∑( )
x
∑

Function to optimize:

Gradient:

( )

)]([)(

)'()'()(

)'()'(exp1)()(

'

'

xnExn

xnxPxn

xnxnw
Z

xnwf
w

jj

x
jj

j
x

i iij
j

-=

-=

-=
¶
¶

å

å å

Counts in training data Weighted sum over all possible worlds
No evidence, just sets of constants
Very hard to approximate

It is #P-complete to count the number of true groundings. 
Therefore, one often sticks to approximations
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]1[]0[ == +
==

ll XX
lll xPxP

xP
xMBxXP

Õ ==
l
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Function to optimize:

Gradient:

Pseudo-likelihood
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Pseudo-likelihood

)()(
)())(|(

]1[]0[ == +
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ll XX
lll xPxP
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j
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)())(|1( ]1[ ==-
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l
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Function to optimize:

Gradient:

While effective, still hard to count in many data sets

Approximate counting techniques exist
(Sarkhel et al. AAAI 2016, Das et al. SDM 2016)
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STRUCTURE LEARNING FOR 
RELATIONAL MODELS
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If data is complete:

To update score after local change, 
only re-score (counting) families that 
changed

If data is incomplete:

To update score after local change, 
rerun parameter estimation algorithm

Probabilistic Graphical Models

S C

E

D

Reverse C ®E
Delete C ®

E

Add C ®D

S C

E

D

S C

E

D

S C

E

D
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Structural EM [Friedman et al. 98]

Training
Data

Expected Counts
EN(X1)
EN(X2)
EN(X3)
EN(H, X1, X1, X3)
EN(Y1, H)
EN(Y2, H)
EN(Y3, H)

Computation

X1 X2 X3

H

Y1 Y2 Y3

X1 X2 X3

H

Y1 Y2 Y3

+

Score & 
Parameterize

Reiterate

EN(X2,X1)
EN(H, X1, X3)
EN(Y1, X2)
EN(Y2, Y1, H)

X1 X2 X3

H

Y1 Y2 Y3
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Given:
§Examples: first-order atomic formulas (atoms), each 

labeled positive or negative.
§Background knowledge: definite clause (if-then rules) 

theory.
§Language bias: constraints on the form of interesting new 

rules (clauses).

Inductive Logic Programming (ILP) = 
Machine Learning + Logic Programming

The Problem Specification
[Muggleton, De Raedt JLP96]
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ILP Specification (Continued)

Find:
A hypothesis h that meets the language 
constraints and that, when conjoined with B, 
implies (lets us prove) all of the positive 
examples but none of the negative examples.

To handle real-world issues such as noise, 
we often relax the requirements, so that h
need only entail significantly more 
positive examples than negative 
examples.
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ILP Specification (illustrated)

c c

c c

c c

n

o

Find set of general rules
mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)
mutagenic(X) :- atom(X,A,n),...

Examples E
Pos(mutagenic(m1)
Pos(mutagenic(m2)
Neg(mutagenic(m3)

Background Knowledge B
molecule(m1)    molecule(m2)
atom(m1,a11,c)    atom(m2,a21,o)
atom(m1,a12,n)    atom(m2,a22,n)
bond(m1,a11,a12)     bond(m2,a21,a22)
....
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A Common Approach

Use a greedy covering algorithm.
Repeat while some positive examples remain 
uncovered (not entailed):

1. Find a good clause (one that covers as many 
positive examples as possible but no/few 
negatives).

2. Add that clause to the current theory, and 
remove the positive examples that it covers.

ILP algorithms use this approach but vary 
in their method for finding a good clause.
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:- true

Coverage = 0.5,0.7

Coverage = 0.6,0.3

Coverage = 0.4,0.6

:- atom(X,A,c)

:- atom(X,A,n)

:- atom(X,A,f)

Coverage = 0.8

Coverage = 0.6

:- atom(X,A,c),bond(A,B)

:- atom(X,A,n),charge(A,0.82)

Example ILP Algorithm: FOIL 
[Quinlan MLJ 5:239-266, 1990]

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…

Some objective function, e.g. 
percentage of covered
positive examples
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VANILLA STRUCTURE LEARNING FOR 
PROBABILISTIC RELATIONAL MODELS
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Vanilla SRL Approach [De Raedt, Kersting ALT04]

Traverses the hypotheses space a la ILP

Replaces ILP’s 0-1 covers relation by a “smooth”, 

probabilistic one [0,1]

0

1

…

Ú

Ú

º 1

mutagenic(X) :- atom(X,A,n),charge(A,0.82)

mutagenic(X) :- atom(X,A,c),bond(A,B)

…

=0.882
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If data is complete:
To update score after local change,  
only re-score (counting) families 
that changed

If data is incomplete:
To update score after local change, 
reran parameter estimation algorithm

So, essentially like in the propositional case !

S C

E

D

Reverse C ®E
Delete C ®

E

Add C ®
D

S C

E

D

S C

E

D

S C

E

D
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nFOIL = FOIL + Naive Bayes

Clauses are independent features

Likelihood for parameter estimation

Conditional likelihood for scoring clauses

atom(X,A,n),charge(A,0.82)

atom(X,A,c),bond(A,B)

…

mutagenic(X)

P(truth value clauses|truth value target predicate) x P(truth value target predicate)

[Landwehr, Kersting, De Raedt JMLR 8(Mar):481-507, 2007]



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

STRUCTURE LEARNING MARKOV LOGIC 
NETWORKS
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Ensemble Statistical Relational Learning,
here Functional Gradient Boosting

Learn multiple weak models rather than a single complex model

Data

Predictions

- Gradients=
Current Model

+

+

Induce

Iterate

Final Model = + + + +…

ψm

Friedman et al 2001, Dietterich et al. 2004, Natarajan et al. MLJ 2012



Kristian Kersting: „Lifted Statistical ML “, ACAI 2018, Ferrara, Italy

• Probability of an example 

• Functional gradient
• Maximize

• Gradient of log-likelihood w.r.t ψ

• Sum all gradients to get final ψ

Functional Gradients for SRL Models
x Δ

target(x1) 0.7
target(x2) -0.2
target(x3) -0.9

Can be extended to multiple SRL models & in presence of hidden data
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Boosting MLNs

Other preds Other preds Other preds Other preds Other preds ……

pred pred pred pred pred ……

Generate 
Example
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Boosting MLNs

Other preds Other preds Other preds Other preds Other preds ……

pred pred pred pred pred ……

Generate 
Example

- 0.5
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Boosting MLNs

Other preds Other preds Other preds Other preds Other preds ……

pred pred pred pred pred ……
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0.2

- 0.8
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Boosting MLNs

Other preds Other preds Other preds Other preds Other preds ……

pred pred pred pred pred ……

Generate 
Example
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Induce 
Regression 
Tree
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Boosting MLNs
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pred pred pred pred pred ……
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Boosting MLNs

Other preds Other preds Other preds Other preds Other preds ……

pred pred pred pred pred ……

Generate 
Example

- 0.5

0.2

- 0.8

Induce 
Regression 
Tree

Up
da

te
 M

od
el

Final 
Model = + + + +

…
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Kersting, Mladenov, Tokmakov AIJ´17, Mladenov, Heinrich, Kleinhans, Gonsio, Kersting DeLBP´16

And recall that this applies to mathematical
programs, too!

Support Vector Machines 
Cortes, Vapnik MLJ 20(3):273-297, 1995  

Write down SVM in „paper form.“ The machine compiles it into solver form.

Embedded within
Python s.t. loops and 
rules can be used
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Algebraic 
Decision Diagrams

Formulae parse 
trees

Matrix Free 
Optimization

( è ) +

New field: Symbolic-numerical AI
[Mladenov, Belle, Kersting AAAI´17, Kolb, Mladenov, Sanner, Belle, Kersting IJCAI ECAI´18]

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The 
objects must be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a 
number of tools which are possibly available. Various painting and connection methods are represented, each having an 
effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting 
factor of 0. 9 was used used

>4.8x faster
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What have we learnt in Part II?

§Main insight for parameter estimation: 
parameter tighting

§Vanilla relational learning approach does 
a greedy search by adding/deleting 
literals/clauses using some (probabilistic) 
scoring function

§Learning many weak rules of how to 
change a model can be much faster

§Covers the whole AI spectrum
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Conclusions: This “Deep AI ” excites 
industry: 
RelationalAI, LogicBlox, 
Apple, and Uber are 
investing hundreds of 
millions of US dollars

And it appears in 
industrial strength 
solvers such as 
CPLEX and 
GUROBI
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And there is a popular science books about it.
In 2016 Bill Gates recommended the book, alongside Nick 
Bostrom‘s Superintelligence, as one of two books everyone
should read to understand AI.

https://en.wikipedia.org/wiki/Bill_Gates
https://en.wikipedia.org/wiki/Nick_Bostrom
https://en.wikipedia.org/wiki/Superintelligence_(book)
https://en.wikipedia.org/wiki/Superintelligence_(book)
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