

Kristian

Everyone should be able to turn data into insights, whether ML expert or not

Others and I have a dream

This poses many deep and fascinating questions

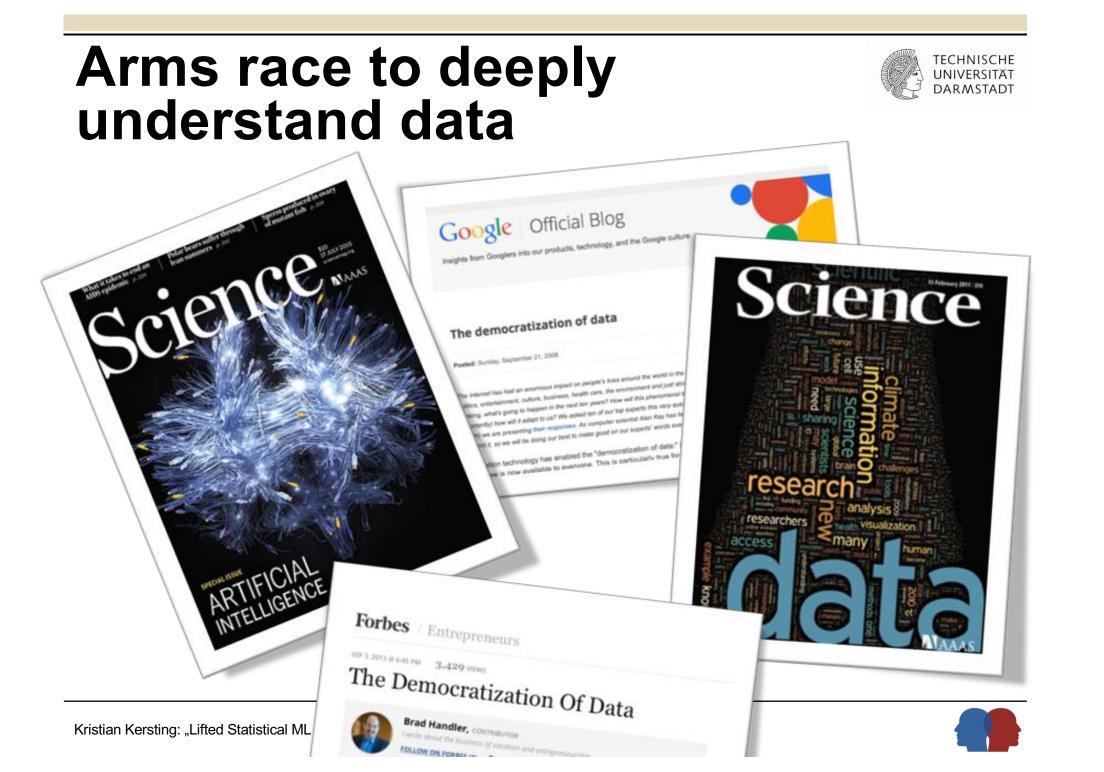
How can we make ML and AI more tractable?

How can computers reason about and learn with complex data and knowledge?

How can computers decide autonomously which representation and algorithms are best for the data/problem?

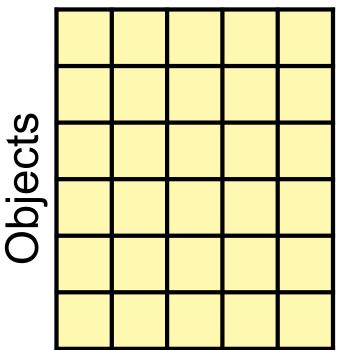
How can computers understand data with minimal expert input?

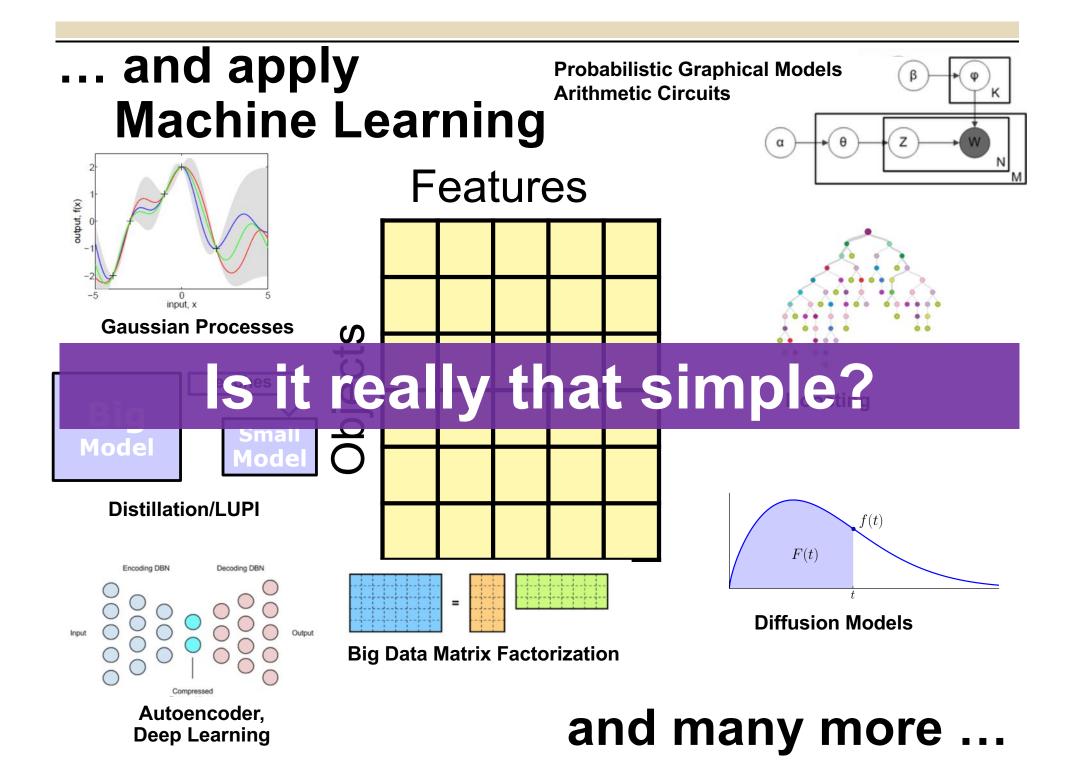
Today is the golden era of data

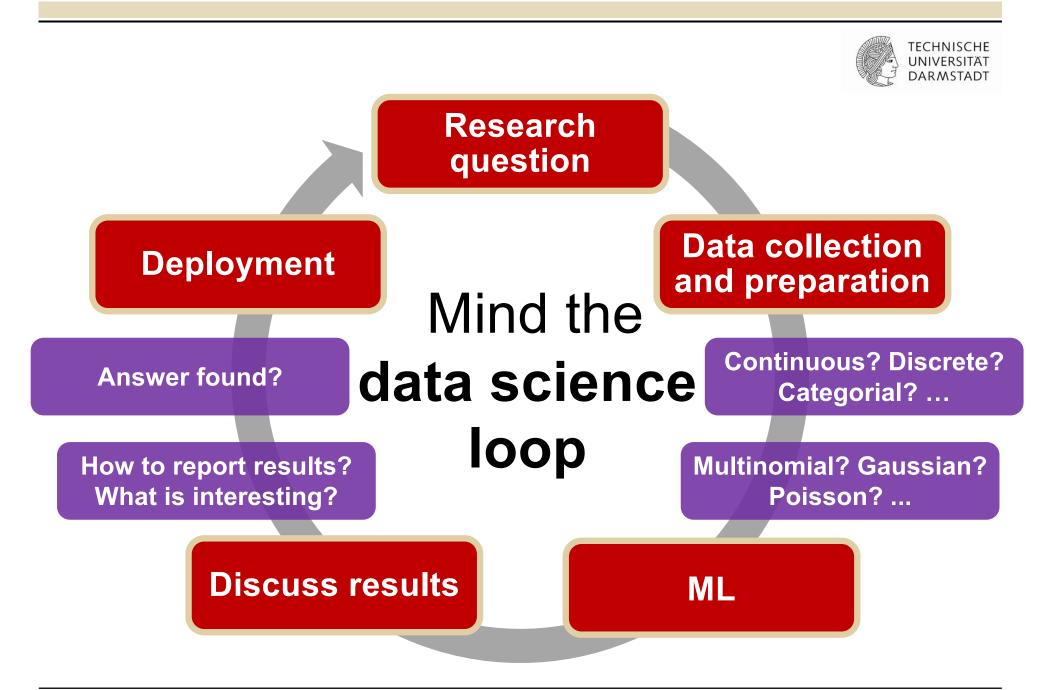


Bottom line: Take your data spreadsheet ...

Features







Complex data networks abound

[Lu, Krishna, Bernstein, Fei-Fei "Visual Relationship Detection" CVPR 2016]

VISUALGENOME About

Download Data Analysis

Explore Paper

Visual Genome is a dataset, knowledge base, an ongoing connect structured image co language.

> Explore our data: throwing frisbee, helping, angry

orc

Examples not stored in a single table but in a large graph with attributes!

Read our paper.

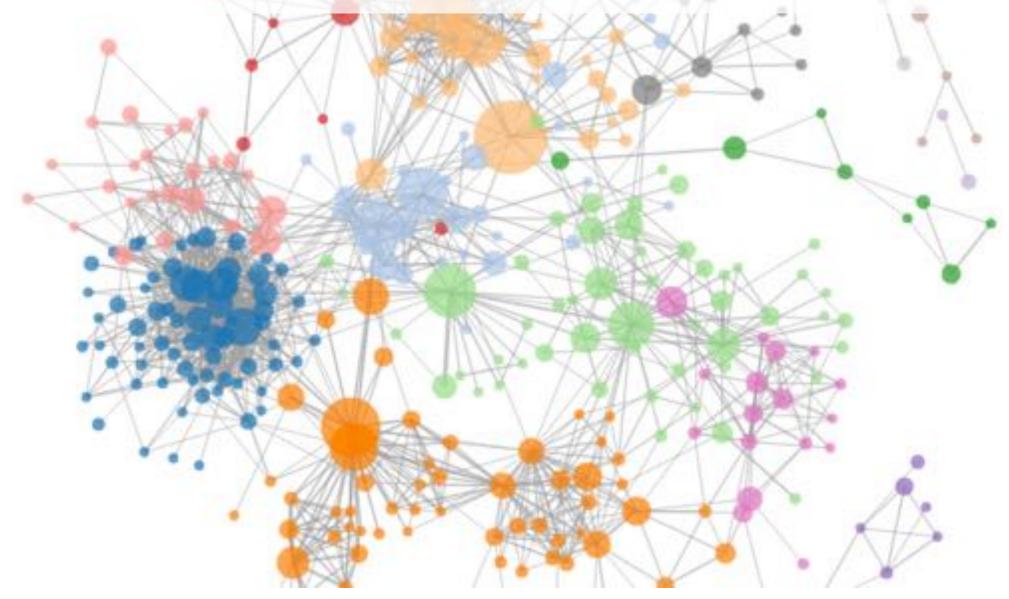
We have to democratize AI, Machine Learning, and Data Science

We have to work on **Systems AI**, so that we know how to rapidly combine, deploy, and maintain algorithms

So yes, today is the golden era of data ...

... for the best-trained, best-funded Machine Learning and Artificial Intelligence teams

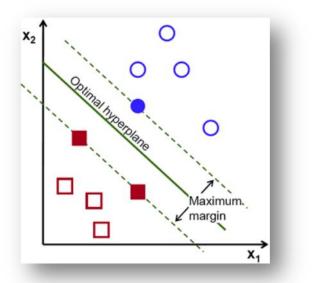
Let's say we want to classify publications into scientific disciplines



$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \ \mathcal{P}(\mathbf{w},b,\boldsymbol{\xi}) = \frac{1}{2}\mathbf{w}^2 + C\sum_{i=1}^n \xi_i$$
subject to
$$\begin{cases} \forall i \quad y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) \ge 1 - \xi_i \\ \forall i \quad \xi_i \ge 0 \end{cases}$$

Mathematics is not a high-level programming language!

Support Vector Machines Cortes, Vapnik MLJ 20(3):273-297, 1995



Machine Learning Programming

Write down SVM in "paper form." The machine compiles it into solver form.

```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
                           reloop
 Embedded within
 Python s.t. loops and
 rules can be used
 RELOOP: A Toolkit for Relational Convex Optimization
                                                                                 Maximum
                                                                                margin
                                          Support Vector Machines
                                Cortes, Vapnik MLJ 20(3):273-297, 1995
```


X₁

But wait, publications are citing each other. OMG, I have to use graph kernels!

REALLY?

No, just add two lines of code!

Write down SVM in "paper form." The machine compiles it into solver form.

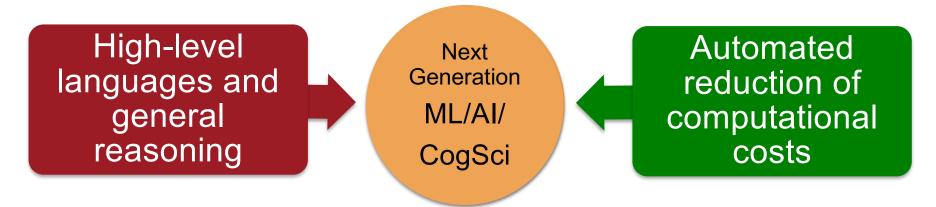
```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
#TRANSDUCTIVE PART
#cited instances should have the same labels.
subject to forall {I1, I2 in linked(I1, I2)}: labeled(I1) * predict(I2) >= 1 - slack(I1, I2)
subject to forall {I1, I2 in linked(I1, I2)}: coslack(I1, I2) >= 0; #coslacks are positive
```

Citing papers share topics

No kernel, the structure is expressed within the constraints!

Take-away message

To move beyond deep learning, ML, AI and Computational Cognitive Science need a crossover with data and programming abstractions as well as general reasoning



- High-level languages increase the number of people who can successfully build ML/AI applications that involve learning and reasoning
- To deal with the computational complexity, we need ways to automatically reduce the solver costs

Roadmap of this tutorial

Two parts

- 1. Lifted Probabilistic Inference and Tractable Probabilistic Models
- 2. Statistical Relational Learning and Probabilistic Programming

- High-level languages increase the number of people who can successfully build ML/AI applications that involve learning and reasoning
- To deal with the computational complexity, we need ways to automatically reduce the solver costs

Lifted Statistical Machine Learning

Computational modeling of complex AI systems that learn and think

Part I: Tractable Probabilistic Models

Thanks to Babak Ahmadi, Vincent Conitzer, Rina Dechter, Luc De Raedt, Pedro Domingos, Peter Flach, Dieter Fensel, Florian Ficher, Vibhav Gogate, Carlos Guestrin, Daphen Koller, Nir Friedman, Martin Mladenov, Ray Mooney, Sriraam Natarajan, David Poole, Fabrizio Riguzzi, Dan Suciu, Guy van den Broeck, and many others for making their slides publically available

Symbolic Complexity **Structure** Logic Abstraction Resolution Generalization Modules

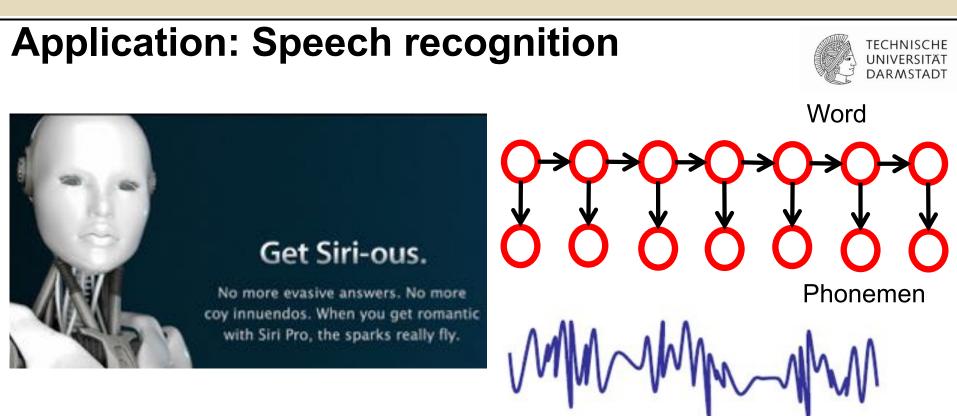
Numeric Noise **Probabilities** Values Graphical Expectation

TECHNISCHE UNIVERSITÄT DARMSTADT

Judea Pearl received 2012 the <u>ACM Turing</u> <u>Award 2012</u> for his work on graphical models

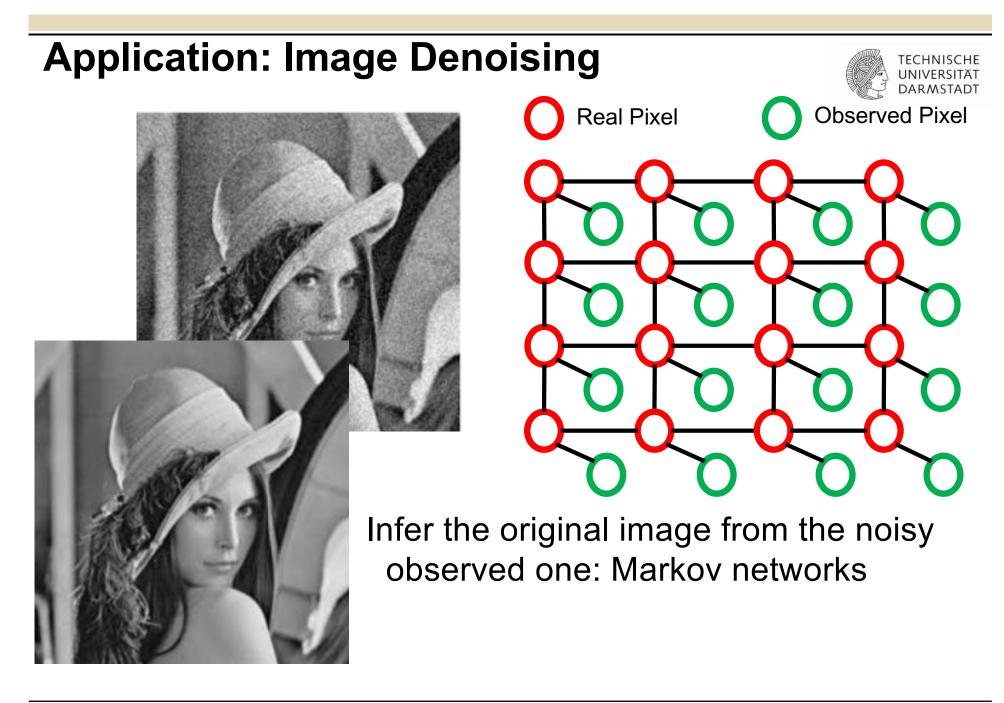
Roadmap of Part I

Basics of graphical models Exploiting symmetries for inference Deep probabilistic models



"He ate the cookies on the couch"

Infer the words from spoken language: Hidden Markov Model



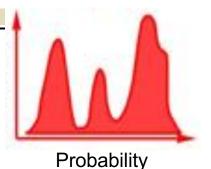
Graphical models are omnipresent

Information retrivel, search, collaborative filtering, gene expression analysis, natural language processing, bioinformatics, and many,

> many, many, many many more!

OK, so what are probabilities and graphical models?

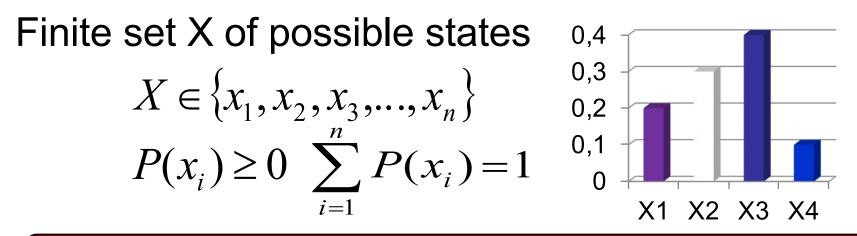
In a Nutshell, Graphical Models are ...



... a graphical notation for (conditional) independency assumptions and therefore a (hopefully) compact specification of probability distributions

Nodes= Random Variables (RVS) Edges= Dependencies among RVs Sayesian
NetworksMarkov
NetworksFactor
Graphs

Discrete Random Variables



OK, but answering the question requires the joint distribution

What is the probability that smoking causes cancer?

<	Smoking)
	Cancer	

no	few	many
0.800	0.150	0.050
no	benigne	maligne

Joint Distribution

Probability that X=x and Y=y are "true"

$$P(x, y) \equiv P(X = x \land Y = y)$$

Concor

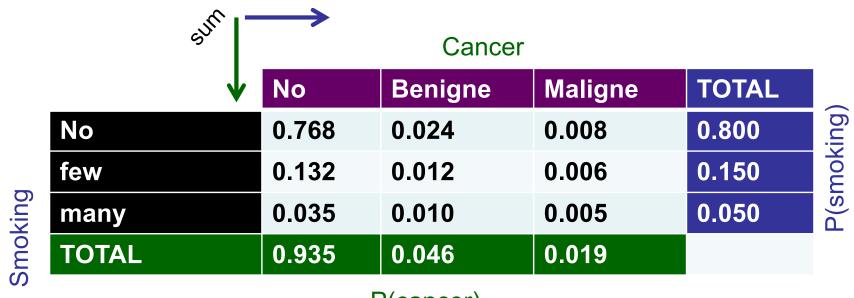
	Cancer				
		no	benigne	maligne	
b	no	0.768	0.024	0.008	
moking	few	0.132	0.012	0.006	
Sm	many	0.035	0.010	0.005	

The joint distribution allows us to answer any question! But how?

Make use of basic probability theory

Marginalization

$$P(Y) = \sum_{i=1}^{n} P(Y, x_i)$$



P(cancer)

Product rule & conditional probability

$$P(X,Y) = P(X | Y)P(Y) = P(Y | X)P(X)$$

Probability that X=x if we have observed Y=y (P(y)>0)

Probably the most important rule: Bayes

$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

cancer

		no	benigne	maligne	
smoking	no	0.768	0.024	0.008	
	few	0.132	0.012	0.006	
	many	0.035	0.010	0.005	
	TOTAL	0.935	0.046	0.019	

P(Krebs)

Since we know already P(R,K) und auch P(K), just divide them.

Probably the most important rule: Bayes

$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

cancer

		no	benigne	maligne	
smoking	no	0.768/0.935	0.024/ 0.46	0.008/ 0.019	
	few	0.132/0.935	0.012/ 0.46	0.006/ 0.019	
	many	0.035/0.935	0.010/ 0.46	0.005/ 0.019	
	TOTAL	0.935	0.046	0.019	
	P(cancer)				

Probably the most important rule: Bayes

$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

oon	oor-			1
Call	cer=	÷	÷	

		no	benigne	maligne
king	no	0.821	0.522	0.421
o(smoking	few	0.141	0.261	0.316
P(sı	many	0.037	0.217	0.263

As long as all entries are >0, everything can be computed! Mission completed?

Joint distribution is enumerating everything

- •Worst-case run time: O(2ⁿ)
 - n = # of RVs
- Space is O(2ⁿ) too
 - Size of the table of the joint distribution

Main idea: make use of independencies to compress the representation

Indpendency

(Current) age and the gender of a person are independent $P(G | A) = P(G) \cdot P(G)$

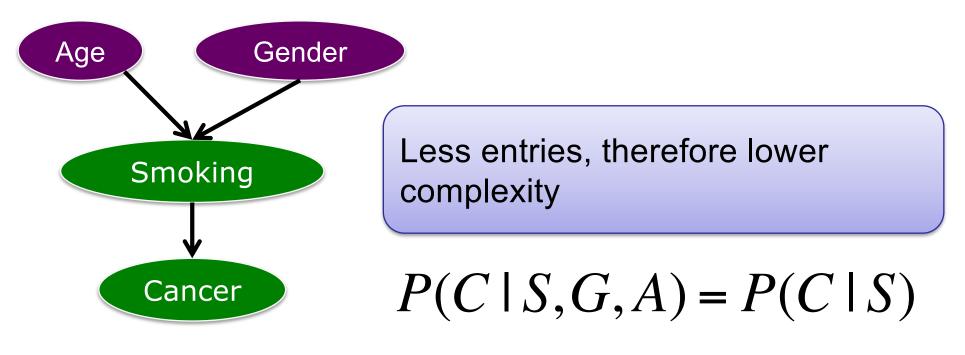
$$P(G, A) = P(G) \cdot P(A)$$
$$P(A | G) = P(A)$$
$$P(G | A) = P(G)$$

You would not give me money for information on the gender to know the age of a person!

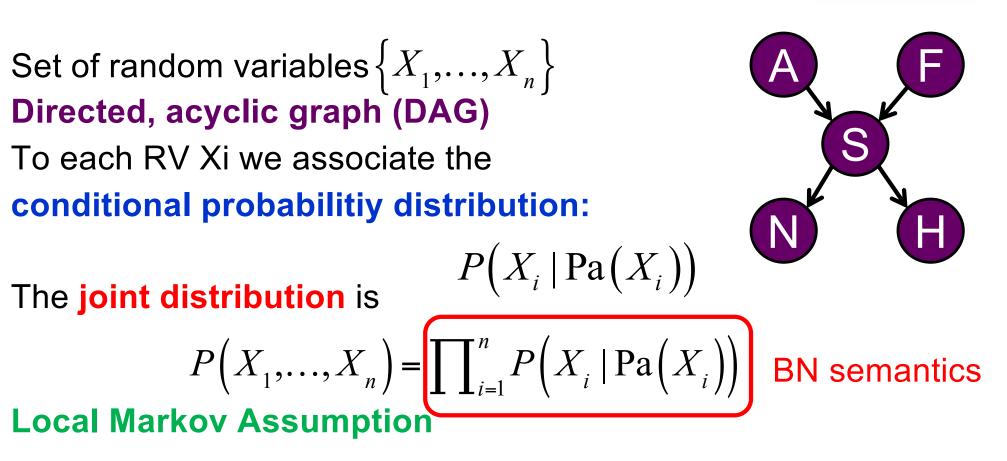
Conditional Independence

Cance is independent of age and gender, if the person smokes.

If you have not observed anything,age and gender are independent.



Bayesian Networks [Pearl 1989]



Each RV X is independent of ist "non-descendant" given ist parents (Xi \perp nonDescendants| Pa_{Xi})

Example						TECHNIS UNIVERS DARMST	TÄT	
				But	how d	o we do	inference	?
$R \in \{no, few, many\}$ Smokin				g		→ Ca	ncer	
	P(S=n)		0.80					
	P(S=f)		0.15		C		,	
	P(S=m)	(S=m) 0.05		K	$f \in \{no\}$,benigne	,maligne}	
		Smokir		g=	n	f	· m	
P(C:		P(C=n))		0.96	0.88	0.60	
P(C=b)		0.03	0.08	0.25		
	P(C=m)			0.01	0.04	0.15		

What is Inference?

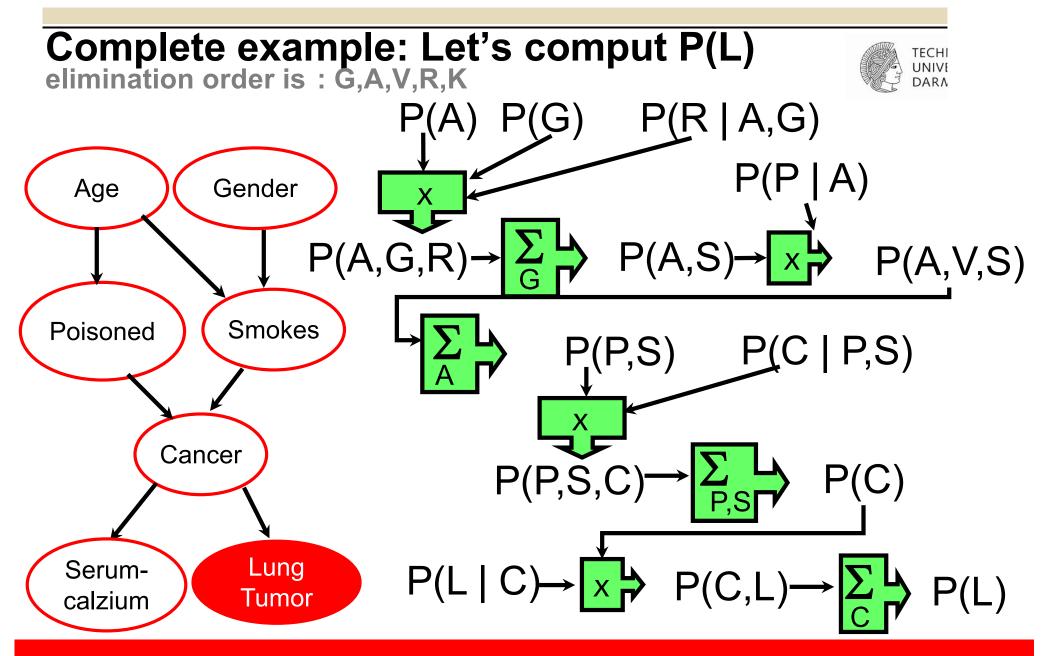
Query: $P(X \mid e)$

Definiton of conditional probability $P(X \mid e) = \frac{P(X, e)}{P(e)}$

Up to normalization $P(X \mid e) \propto P(X, e)$ Hence, this rewrites to

$$P(\mathbf{Y}) = \underbrace{\sum_{X_i \notin \mathbf{Y}} \prod_{i=1}^n P(X_i \mid \text{Pa}(X_i))}_{\text{BN semantics}}$$

BN semantics
Marginalization
Main observation: Σ and \prod commute
 $\sum_{a}(P_1 \mid X \mid P_2) = (\sum_{a} P_1) \mid X \mid P_2 \text{ if A is not in } P_2$



Exponentiall in the size of the largest (induced) factor (table) also called treewidth: 2³ vs 2⁷

As an algorithm, this is called: Variable elimination

Given a BN and a query P(X|e) / P(X,e)

Instantiate evidence e

Choose an elimination order over the variables, e.g., X_1 , ..., X_n Initial *factors* { f_1 ,..., f_n }: $f_i = P(X_i | Pa_{Xi})$ (CPT for X_i)

For i = 1 to n, if $X_i \notin \{X, E\}$

- Collect factors f_1, \ldots, f_k that include X_i
- Generate a new factor by eliminating X_i from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

Variable X_i has been eliminated! Add g to the set of factors

Normalize P(X, e) to obtain P(X|e)

Uncertainty is omnipresent

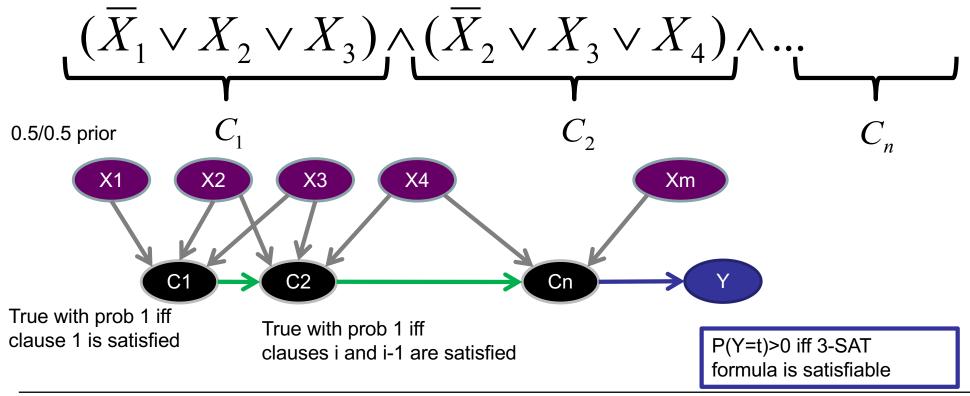
Uncertainty can be captured using probability distributions

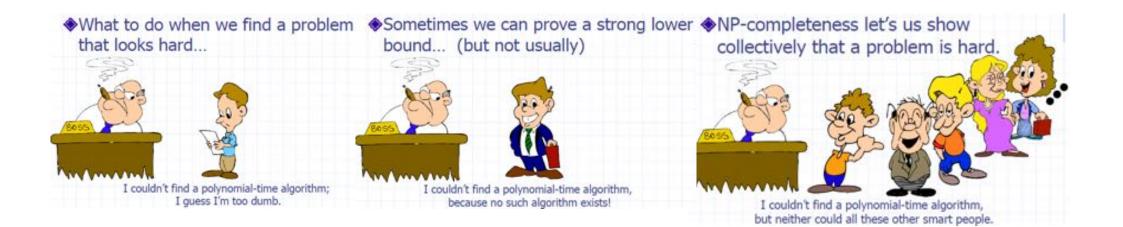
Graphical models are compact encodings of probability distributions

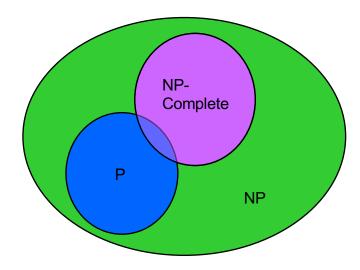
They lead to "efficient" algorithms for inference such as Variablen-Elimination

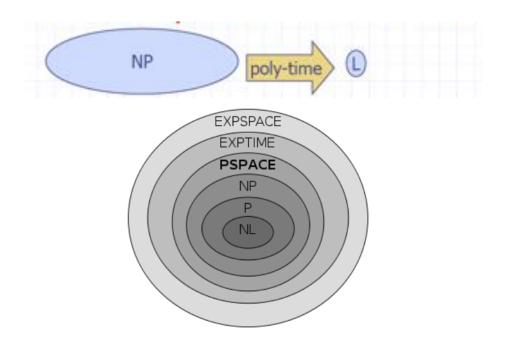
Mission Completed? No ...

Theorem: Inference (even approximate) in Bayesian networks is NP-hard (#P; via reduction to 3-SAT)









What have we learnt about Bayesian networks?

- Bayesian networks (BNs) encode joint distributions
- They are DAGs

(nodes = RVs, edges = dependencies)

- Inference is NP-hard
- Variable Elimination is one of the most basic inference approaches; there are many other inference approaches
- We have skipped learning BNs

Roadmap of the course

Basics of graphical models Exploiting symmetries for inference Sum-product networks

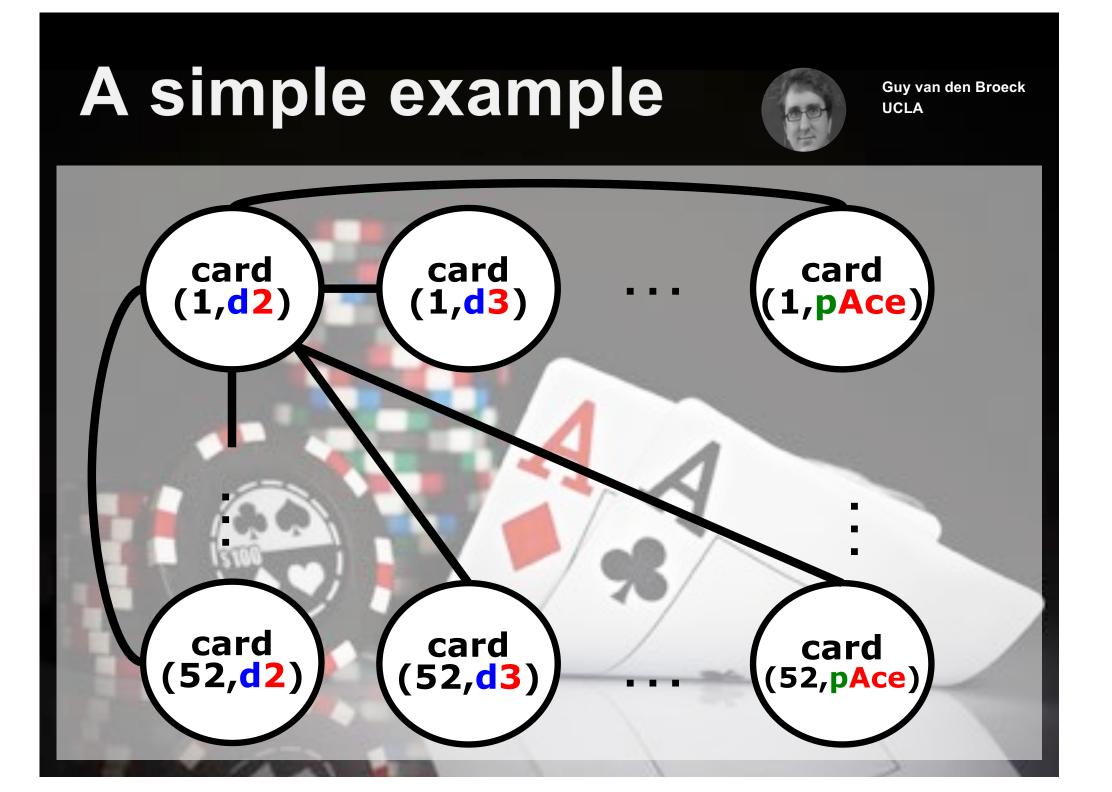
Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

A simple example

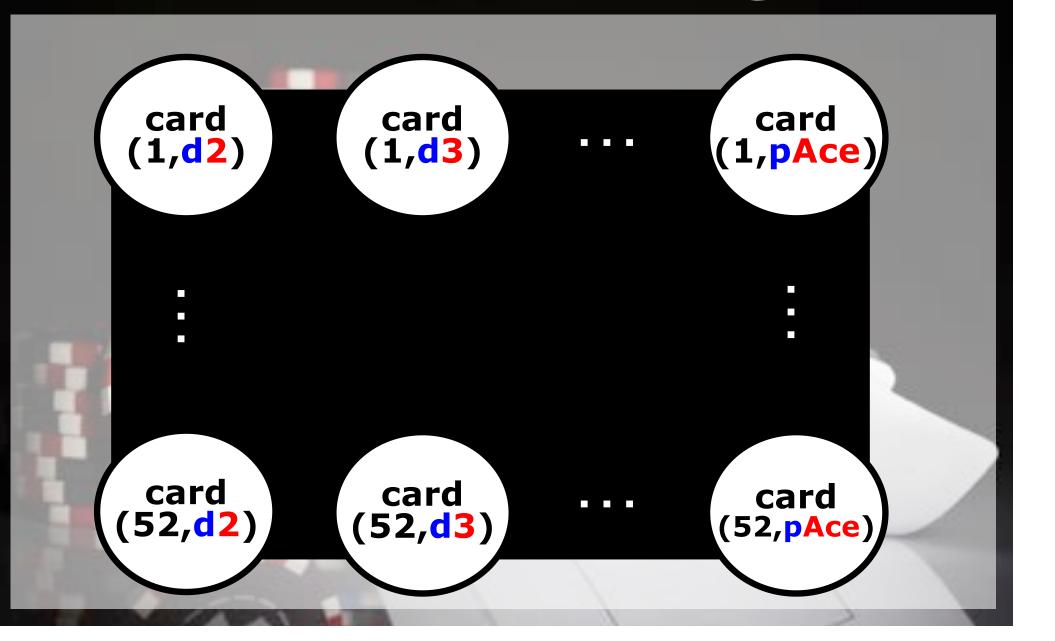
Guy van den Broeck UCLA

What is the probability that the first card of a randomly shuffled deck with 52 cards is an Ace?

How would a machine solve this? One option is to treat this as an inference problem within in a graphical model



Guy van den Broeck UCLA



We do not want to write down all the rules!

Faster modelling

Let's use programming abstractions such as e.g.

w1: \forall p,x,y: card(P,X),card(P,Y) \Rightarrow x=y w2: \forall c,x,y: card(X,C),card(Y,C) \Rightarrow x=y

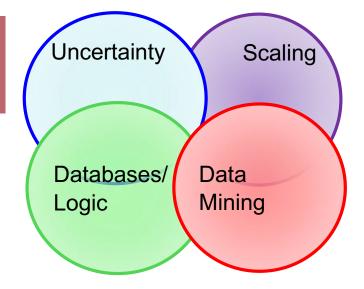
We do not want to write down all the rules!

Statistical Relational Artificial Intelligence Logic, Probability, and Computation Luc de Rush Kristian Konting Steasen Naturajan David Poole

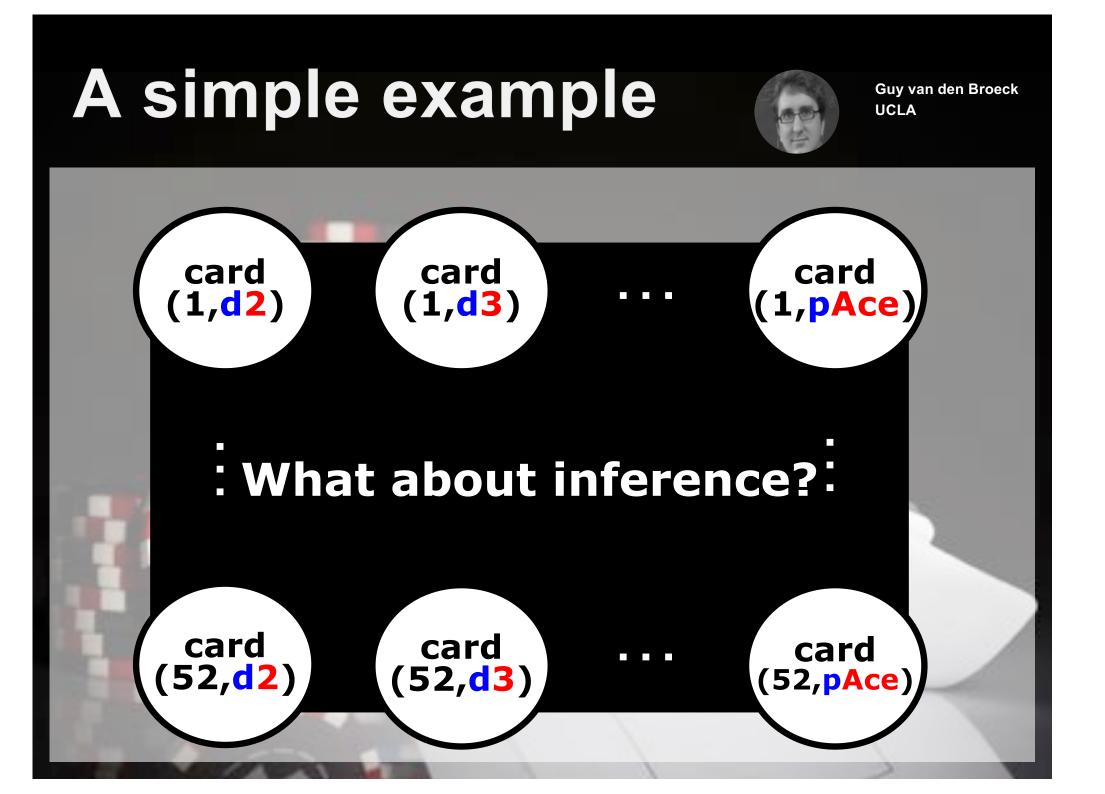
De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

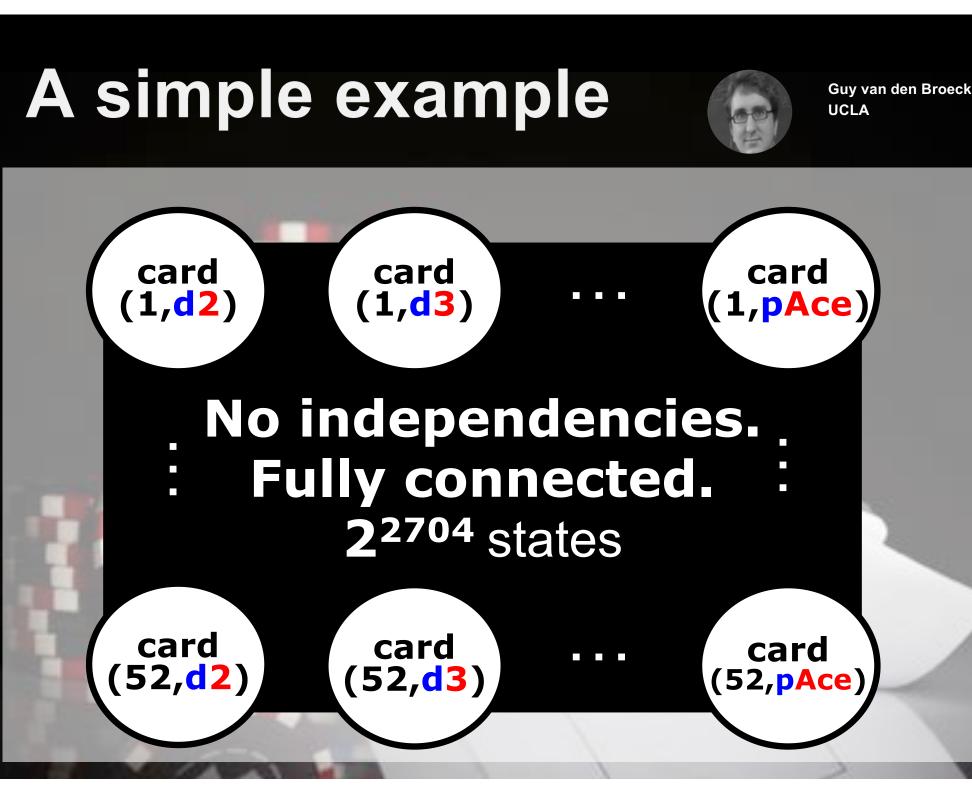
Crossover of ML/AI with data & programming abstractions

make the ML/AI expert more effective increases the number of people who can successfully build ML/AI applications



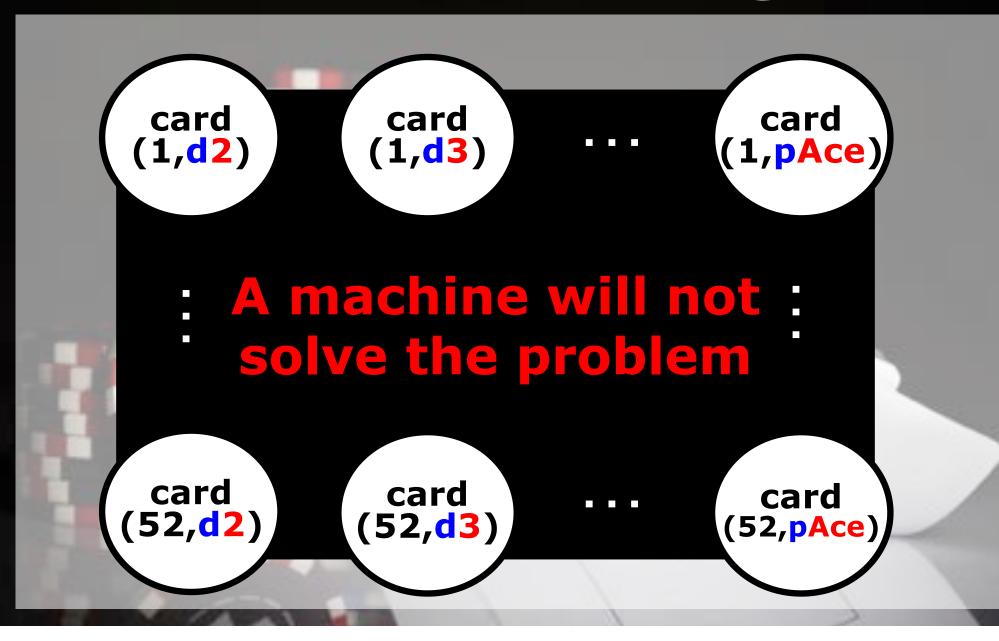
Not convinced? LogicBlox, RelationalAl, Apple and Uber invest(ed) hundreds of millions of dollars into this Al/ML Systems view





A simple example

Guy van den Broeck UCLA



What are we missing?

Positions and cards are exchangable but the machine is not aware of these symmetries

Faster modelling

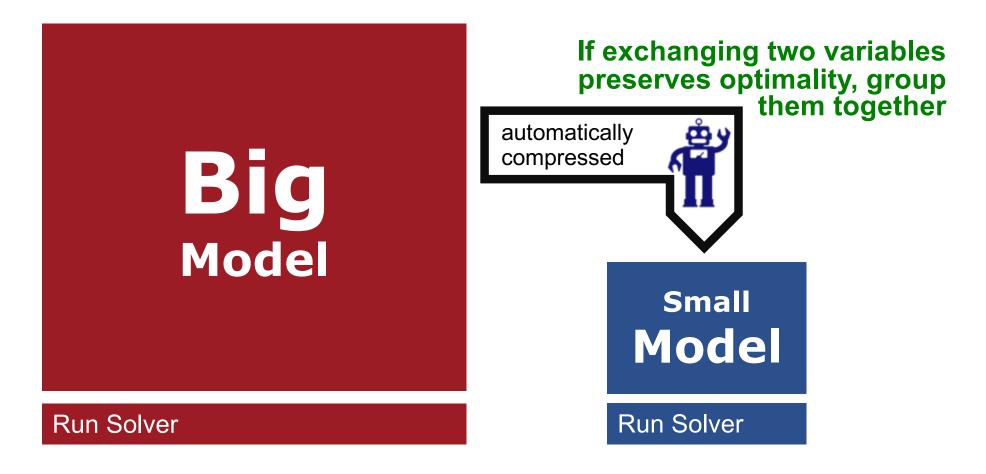
Let's use programming abstractions together with symmetry- and languageaware solvers

Faster solvers

Positions and cards are exchangable but the machine is not aware of these symmetries

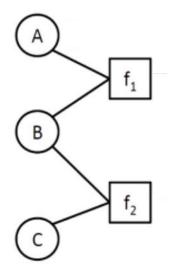
Like "-O" flags known from compilers: Let the AI machine figure out computational symmetries

[Mladenov, Ahmadi, Kersting AISTATS '12, Grohe, Kersting, Mladenov, Selman ESA '14, Kersting, Mladenov, Tokmatov AIJ '17]



Compression: Coloring the graph

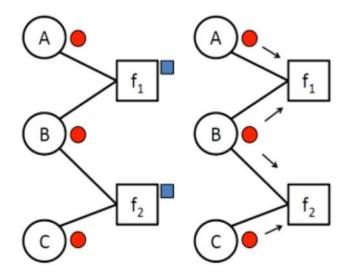
[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting, Mladenov, Tokmatov AIJ 17]



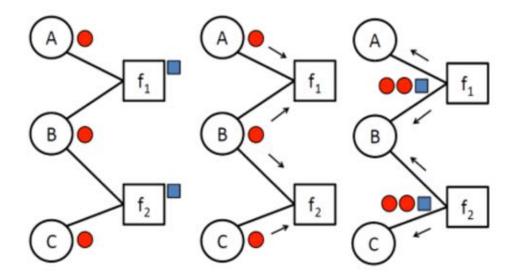
Color nodes initially with the same color, say red

Color factors distinctively according to their equivalences. For instance, assuming f₁ and f₂ to be identical and B appears at the second position within both, say **blue**

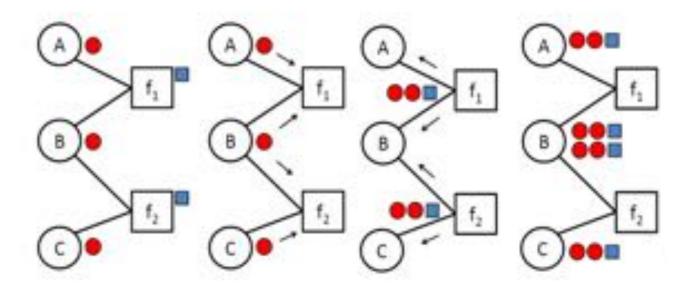
[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting, Mladenov, Tokmatov AIJ 17]



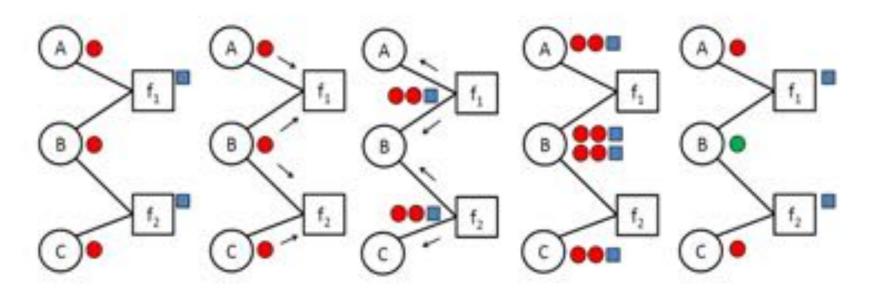
1. Each factor collects the colors of its neighboring nodes



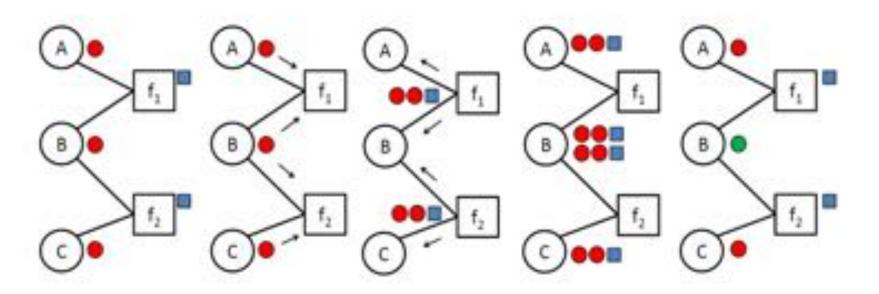
- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color



- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors



- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors
- 4. Nodes are recolored according to the collected signatures



- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors
- 4. Nodes are recolored according to the collected signatures
- 5. If no new color is created stop, otherwise go back to 1

Why does this work?

Approximate probabilistic inference closely connected to LPs

 $\widehat{\mathbf{x}} \in \arg \max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$

Symmetrized Subspace

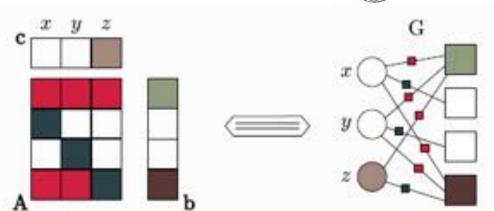
Relaxed Polytope

Marginal Polytope

Why does this work?

od No Sel Od Sel Od Sel Od [Mladenov, Ahmadi, Kersting AISTATS '12, Grohe, Kersting, Mladenov, Selman ESA '14, Kersting, Mladenov, Tokmatov AIJ '15]

Compute Equitable Partition (EP) of the LP using WL



$$\mathcal{P} = \{P_1, \dots, P_p; Q_1, \dots, Q_q\}$$

Partition ofPartition ofLP variablesLP constraints

Intuitively, we group together variables resp. constraints that interact in the very same way in the LP.

TECHNISCHE

DARMSTAD

Fractional Automorphisms of LPs

The EP induces a fractional automorphism of the coefficient matrix **A**

$$\mathbf{X}_{Q}\mathbf{A} = \mathbf{A}\mathbf{X}_{P}$$

where X_Q and X_p are doubly-stochastic matrixes (relaxed form of automorphism)

$$(\mathbf{X}_{P})_{ij} = \begin{cases} 1/|P| & \text{if both vertices } i, \ j \text{ are in the same } P, \\ 0 & \text{otherwise.} \end{cases}$$
$$(\mathbf{X}_{Q})_{ij} = \begin{cases} 1/|Q| & \text{if both vertices } i, \ j \text{ are in the same } Q, \\ 0 & \text{otherwise} \end{cases}$$

Fractional Automorphisms Preserve Solutions

If **x** is feasible, then $\mathbf{X}_{p}\mathbf{x}$ is feasible, too.

By induction, one can show that left-multiplying with a double-stochastic matrix preserves directions of inequalities; they are averagers. Hence,

 $\mathbf{A}\mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{X}_{Q}\mathbf{A}\mathbf{x} \leq \mathbf{X}_{Q}\mathbf{b} \Leftrightarrow \mathbf{A}\mathbf{X}_{P}\mathbf{x} \leq \mathbf{b}$

Fractional Automorphisms Preserve Solutions

Since by construction $\mathbf{c}^T \mathbf{X}_P = \mathbf{c}^T$ and hence $\mathbf{c}^T (\mathbf{X}_P \mathbf{x}) = \mathbf{c}^T \mathbf{x}$

What have we established so far?

Instead of considering the original LP

 $(\mathbf{A},\mathbf{b},\mathbf{c})$

It is sufficient to consider

$$(\mathbf{A}\mathbf{X}_{P},\mathbf{b},\mathbf{X}_{P}{}^{T}\mathbf{c})$$

i.e. we "average" parts of the polytope.

But why is this dimensionality reduction?

Dimensionality Reduction

The doubly-stochastic matrix \mathbf{X}_P can be written

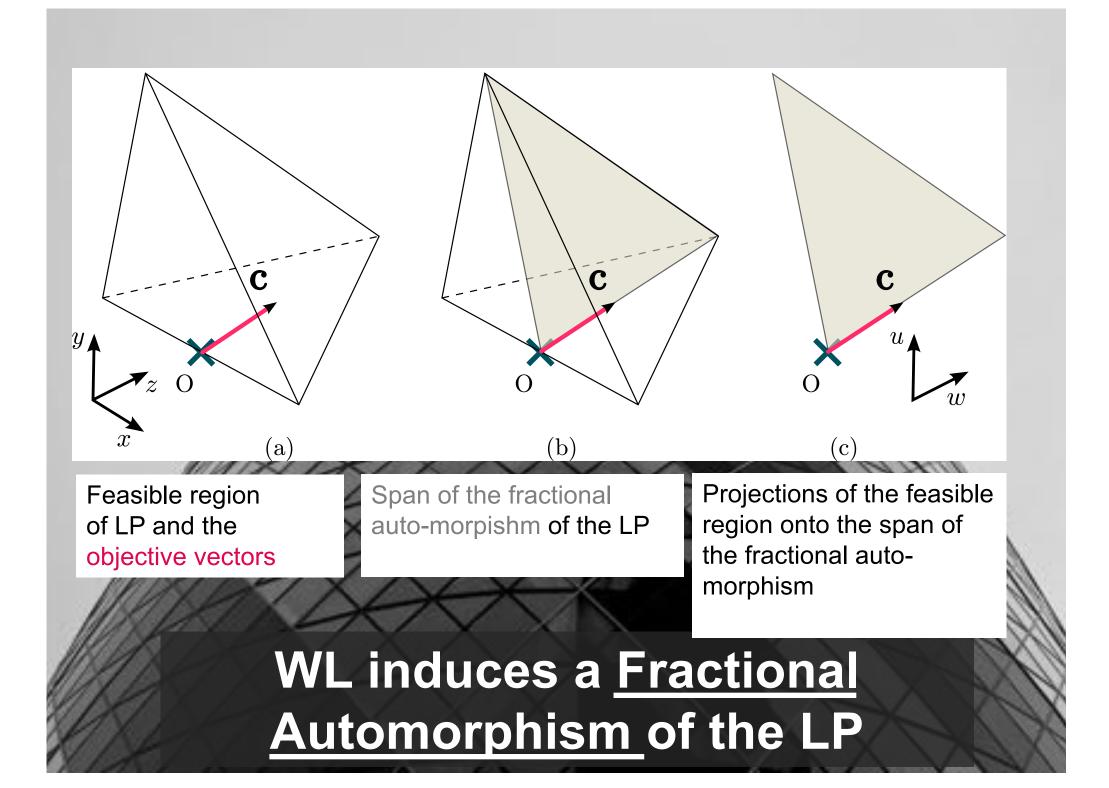
 $\mathbf{v}_{-} = \mathbf{P}\mathbf{P}^{T}$

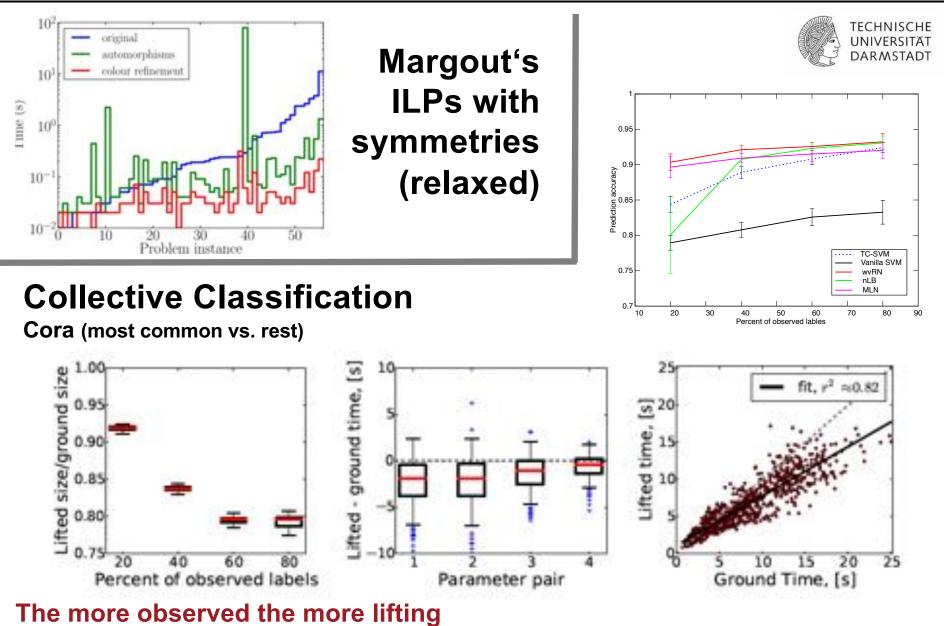
$$\mathbf{B}_{iP} = \begin{cases} \frac{1}{\sqrt{|P|}} & \text{if vertex } i \text{ belongs to part } P, \\ 0 & \text{otherwise.} \end{cases}$$

Since the column space of B is equivalent to the span of \mathbf{X}_P , it is actually sufficient to consider only $(\mathbf{AB}_P, \mathbf{b}, \mathbf{B}_P^T \mathbf{c})$

This is of reduced size, and actually we can also drop any constraint that becomes identical

as



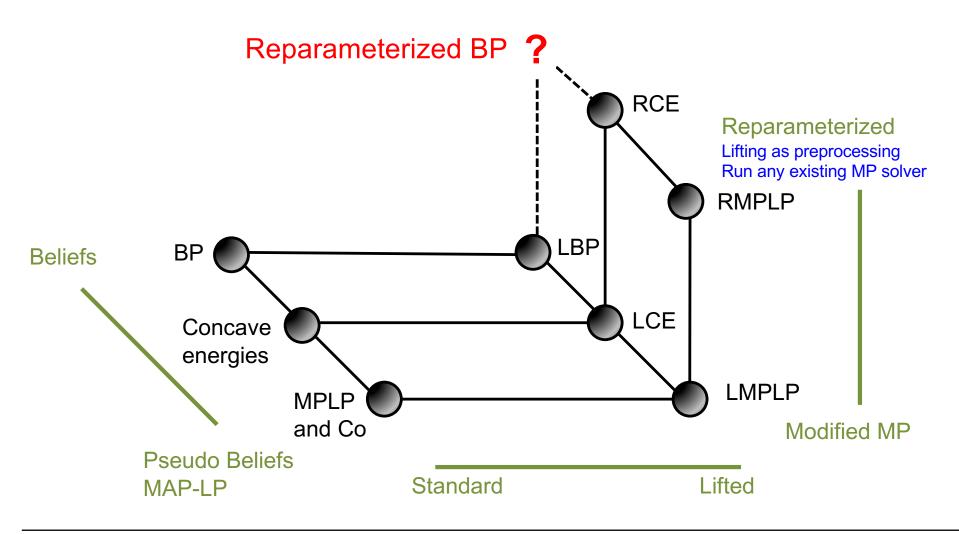


Faster end-to-end even in the light of Gurobi's fast pre-solving heuristics

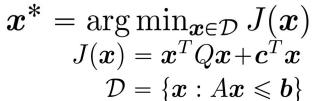
Lifted probabilistic _ Inference in a smaller, inference reparameterized model

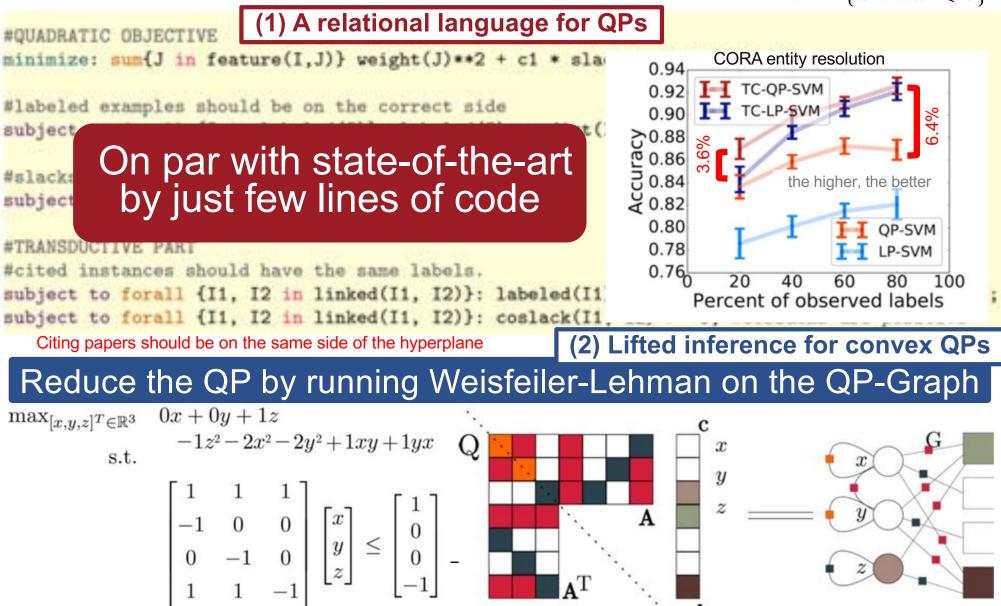
TECHNISCHE

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]



BTW, this also works for Convex Quadratic Programs





Industrial Strength Solvers such as CPLEX and GUROBI are deploying this

Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

What have we learnt about lifted inference?

- Learning (rich) representations is a central problem of machine learning
- (Fractional) symmetry / group theory provide a natural foundation for learning representations
- Symmetries = "unimportant" variants of data (graphs, relational structures, ...)
- "Unimportant" variants get grouped together

However, inference and modelling are still "hard"

For Systems AI we have to provide a set of tools for understanding data that require minimal expert input

The Automatic Statistician

A system which explores an openended space of statistical models to discover a good explanation of the data, and then produces a detailed report with figures and natural-language text of lost and from Thitsenwards

sportfully with a typical lengthscale of 36.9 years. Across period sportfully with a typical lengthscale of 36.9 years. The shape of portfull in way smooth and resembles a sinusoid. This component applies months.

Tes component explains 71.5% of the residual variance; this increases the total variour 22.5% to 92.3%. The addition of this comportent reduces the cross validated M out 0.18 to 0.15.

Only regression so far!

Llyod, Duvenaud, Ghahramani U. Cambridge

Grosse, Tenenbaum MIT

Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

For Systems AI we have to provide a set of tools for understanding data that require minimal expert input

C localhost:8888/tree		
📁 jupyter		
Files Running Clusters		Upload New • C
Select items to perform actions on them.		
0	Notebook list empty.	

Instead of starting with an empty notebook ...

For Systems AI we have to provide a set of tools for understanding data that require minimal expert input

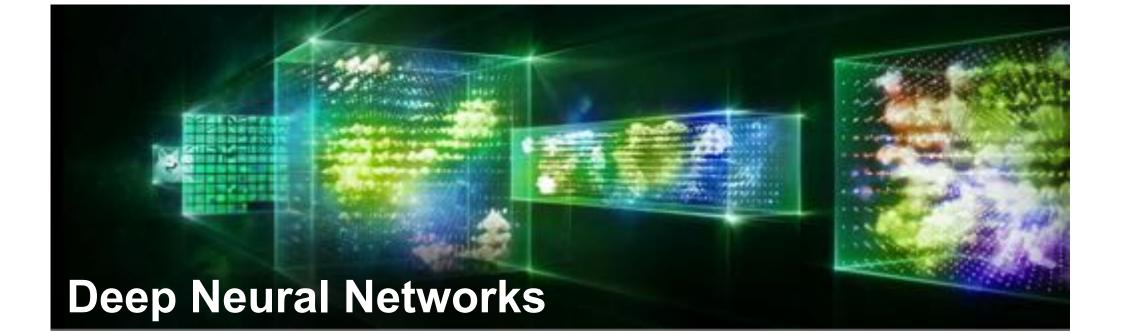
the machine automatically compiles one for you!

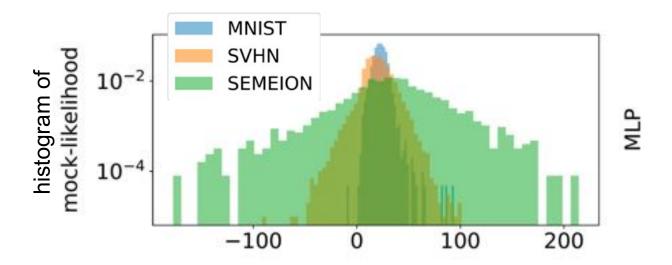
Deep Neural Networks

Potentially much more powerful than shallow architectures, represent computations [Bengio, 2009]

But ...

- Often no probabilistic semantics
- Learning requires extensive efforts



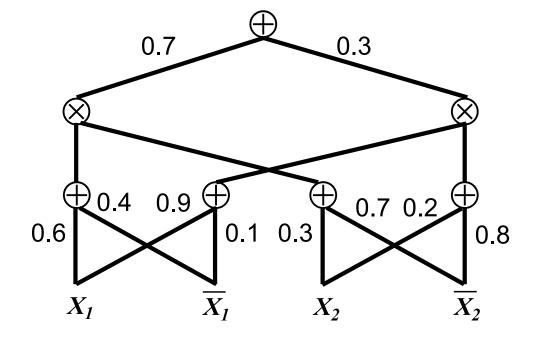


Deep neural networks may not be faithful probabilistic models

Can we borrow ideas from deep learning for probabilistic graphical models?

Judea Pearl, UCLA Turing Award 2012

Deep Probabilistic Modelling using Sum-Product Networks



Computational graph (kind of TensorFlow graphs) that encodes how to compute probabilities

Inference is Linear in Size of Network

Adnan

UCLA

Alternative Representation:

X ₁	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1] + 0.2 \cdot I[X_1=1] \cdot I[X_2=0] + 0.1 \cdot I[X_1=0] \cdot I[X_2=1] + 0.3 \cdot I[X_1=0] \cdot I[X_2=0]$$

Alternative Representation:

X ₁	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1]$$

+ 0.2 \cdot I[X_1=1] \cdot I[X_2=0]
+ 0.1 \cdot I[X_1=0] \cdot I[X_2=1]
+ 0.3 \cdot I[X_1=0] \cdot I[X_2=0]

Shorthand for Indicators

<i>X</i> ₁	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

$$P(X) = 0.4 \cdot X_1 \cdot X_2$$
$$+ 0.2 \cdot X_1 \cdot \overline{X_2}$$
$$+ 0.1 \cdot \overline{X_1} \cdot X_2$$
$$+ 0.3 \cdot \overline{X_1} \cdot \overline{X_2}$$

Sum Out Variables

P(X)	$P(e) = 0.4 \cdot X_1 \cdot X_2$
0.4	$+ 0.2 \cdot X_1 \cdot \overline{X}_2$
0.2	
0.1	$+ 0.1 \cdot X_1 \cdot X_2$
0.3	$+0.3 \cdot X_1 \cdot X_2$

$$e: X_1 = 1$$

$$(e) = \mathbf{0.4} \cdot X_1 \cdot X_2$$

$$+ \mathbf{0.2} \cdot X_1 \cdot \overline{X_2}$$

$$+ 0.1 \cdot \overline{X_1} \cdot X_2$$

TZ

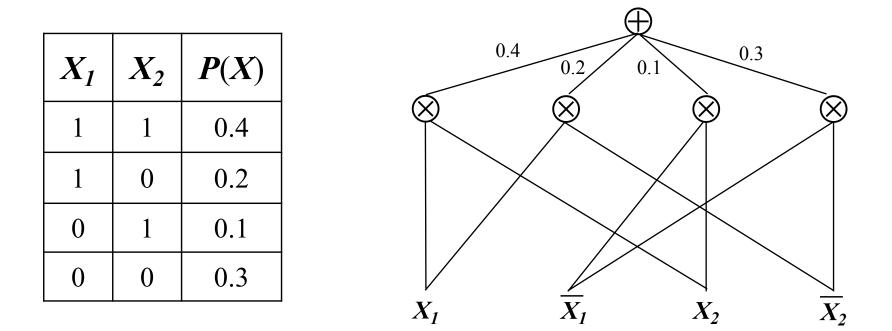
1

Set
$$X_1 = 1, \overline{X_1} = 0, X_2 = 1, \overline{X_2} = 1$$

Easy: Set both indicators of X2 to 1

<i>X</i> ₁	X_2	P (X)
1	1	0.4
1	0	0.2
0	1	0.1
0	0	0.3

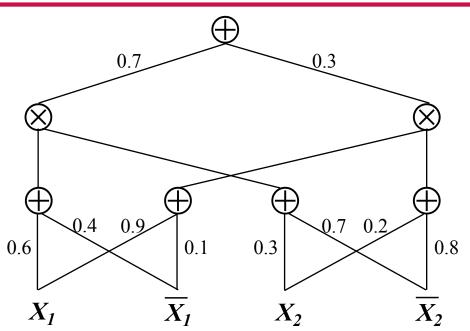
Idea: Deeper Network Representation of a Graphical Model that encodes how to compute probabilities



Sum-Product Networks* (SPNs)

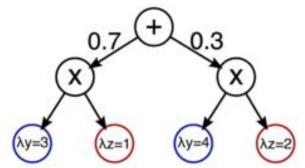
[Poon, Domingos UAI 2011]

A SPN S is a rooted DAG where: Nodes: Sum, product, input indicator Weights on edges from sum to children



*SPNs are an instance of Arithmetic Circuits (ACs). ACs have been introduced into the AI literature more than15 years ago as a tractable representation of probability distributions [Darwiche CACM 48(4):608-647 2001]

Deep Probabilistic Inference Units



SPNs can be compiled into flat, library-free code suitable for embedding in real-time applications and devices

				Т	ABLE II						
PERFORM	ANCE COMPARISO	ON. BEST END-TO	-END THRO	UGHPUTS (T)	, EXCLUD	ING THE CY	CLE COUN	TER MEASU	REMENTS, A	RE	TED BOLD.
-				-		m owned I		(

Dataset	Rows	CPU (µs)	T-CPU (rows/ μs)	CPUF (µs)	T-CPUF (rows/ μs)	GPU (µs)	T-GPU (rows/ μs)	FPGA Cycle Counter	FPGAC (µs)	T-FPGAC (rows/ µs)	FPG. (µ8)	pows/ pows/ ps)
Accidents	17009	2798.27			7.87	63090.94	0.27	17249		100	696.00	24.44
Audio	20000	4271.78			5.4		5	20317	1	A AN	761.00	26.28
Netflix	20000	4892.22			4.8	0		20322	1		654.00	30.58
MSNBC200	388434	15476.05			30.5		1	388900	19		008.00	77.56
MSNBC300	388434	10060.78			41.2		and a	388810	19	10.3	933.00	78.74
NETCS	21574	791.80			31.3	W		21904	1		566.00	38.12
Plants	23215	3621.71	6.41	3521.04	6.59	67004.41	0.35	23592	117.96	196.80	778.00	29.84
NIPS5	10000	25.11	398.31	26.37	379.23	8210.32	1.22	10236	51.18	195.39	337.30	29.03
NIPS10	10000	83.60	119.61	84.39	118.49	11550.82	0.87	10279	51.40	194.57	464.30	21.54
NIPS20	10000	191.30	52.27	182.73	54.72	18689.04	0.54	10285	51.43	194.46	543.60	18.40
NIPS30	10000	387.61	25.80	349.84	28,58	25355.93	0.39	10308	51.80	193.06	592.30	16.88
NIPS40	10000	551.64	18.13	471.26	21.22	30820.49	0.32	10306	51.53	194.06	632.20	15.82
NIPS50	10000	812.44	12.31	792.13	12.62	36355.60	0.28	10559	52.80	189.41	720.60	13.88
NIPS60	10000	1046.38	9.56	662.53	15.09	40778.36	0.25	12271	61.36	162.99	799.20	12.51
NIPS70	10000	1148.17	8.71	1134.80	8.81	46759.26	0.21	14022	70.11	142.63	858.60	11.65
NIPS80	10000	1556.99	6.42	1277.81	7.83	63217.99	0.16	14275	78.51	127.37	961.80	10.40

And also learning is conceptually easy

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

Random sumproduct networks

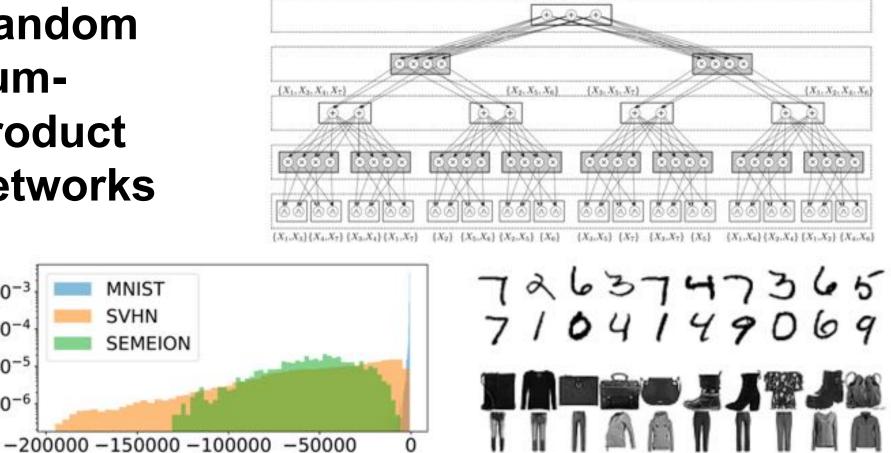
 10^{-3}

 10^{-4}

 10^{-5}

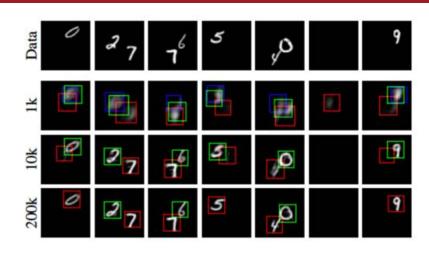
 10^{-6}

log-likelihood histogram of



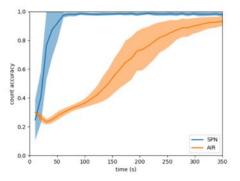
 $\{X_1, X_2, X_3, X_4, X_5, X_6, X_7\}$

And also learning is conceptually easy

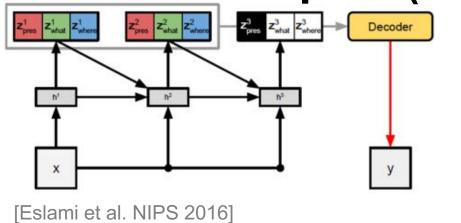


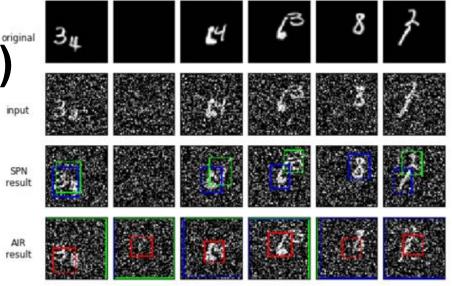
Explicit AIR

[Stelzner, Peharz, Kersting 2018]



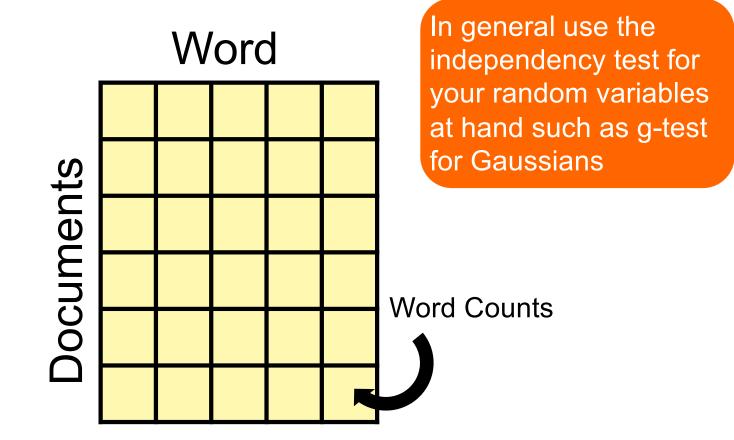
Attend Infer Repeat (AIR)





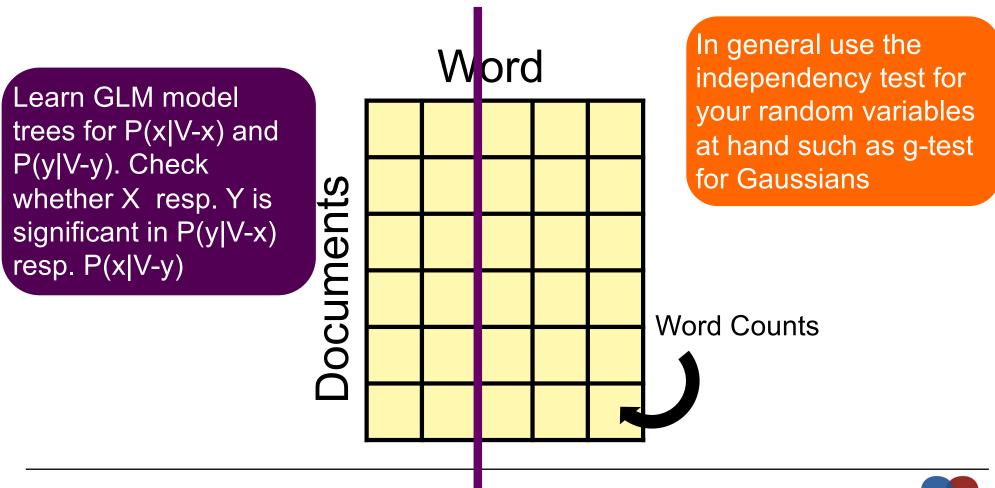
Or you do greedy learning

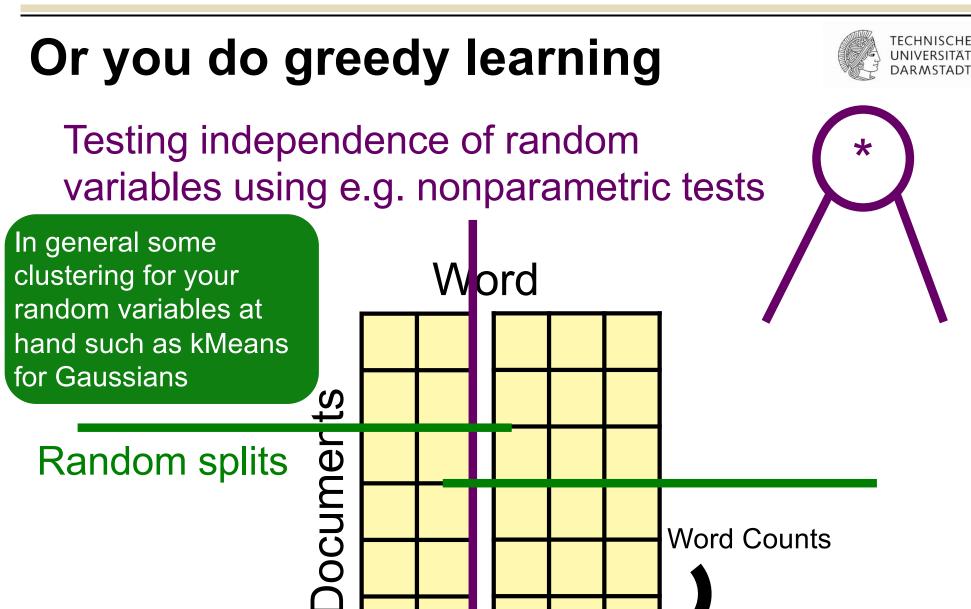
Testing independence of random variables using e.g. nonparametric tests

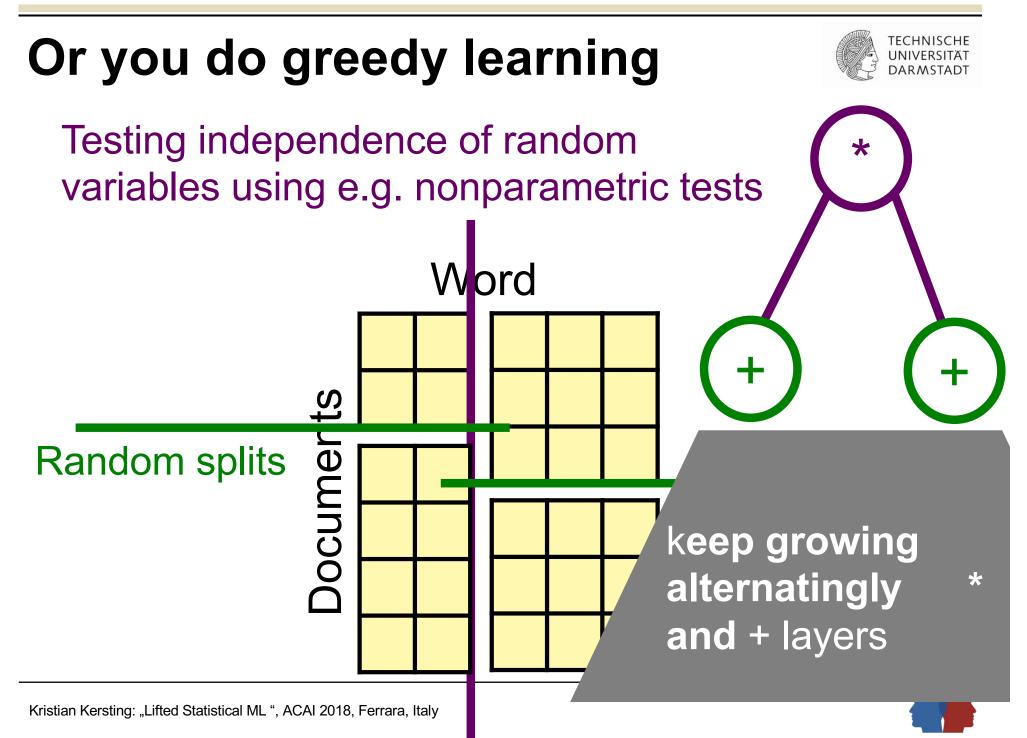


Or you do greedy learning

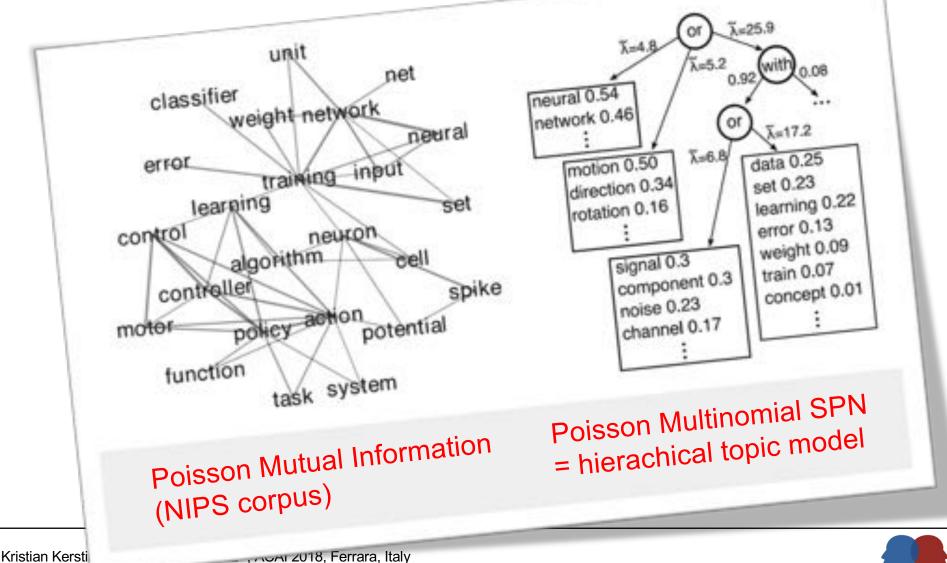
Testing independence of random variables using e.g. nonparametric tests



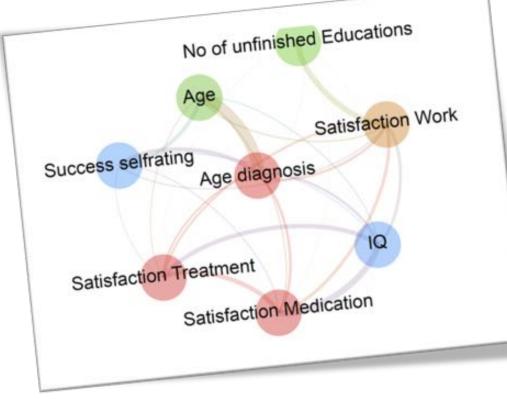




Probabilistic modelling made easy: Build multivariate distribution by stacking univariate ones

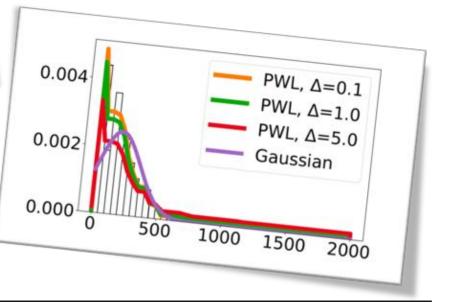


... even in a distribution-agnostic way

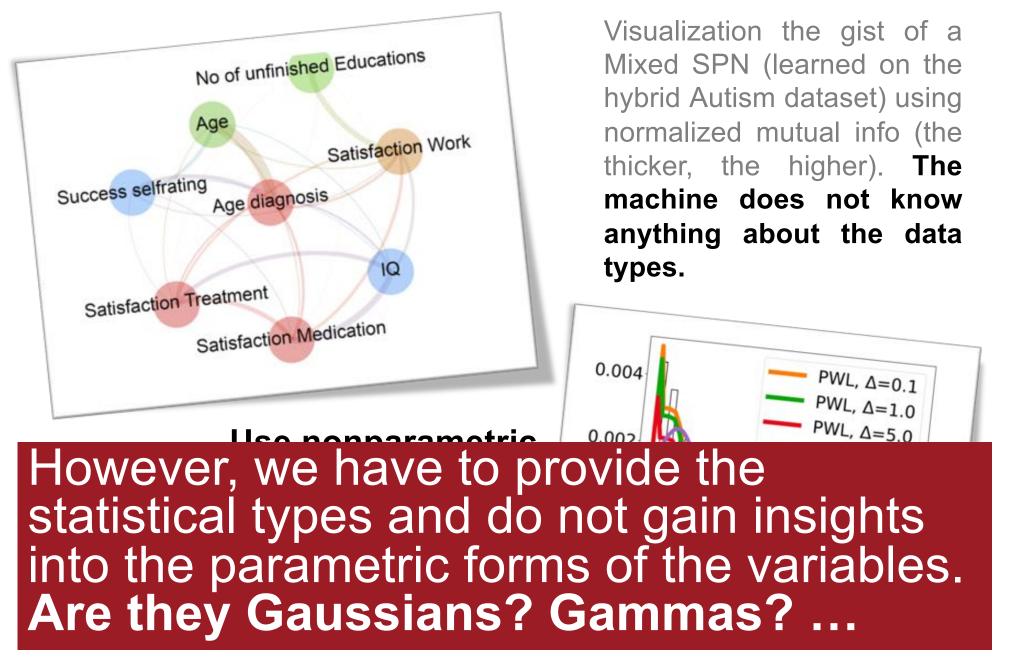


Use nonparametric independency tests and piece-wise linear approximations

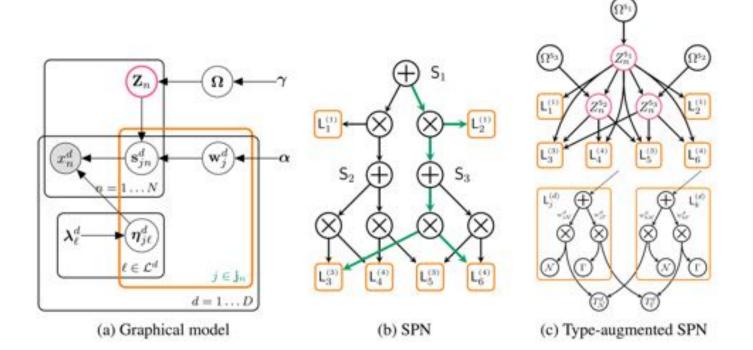
Visualization the gist of a Mixed SPN (learned on the hybrid Autism dataset) using normalized mutual info (the thicker, the higher). The machine does not know anything about the data types.



... even in a distribution-agnostic way



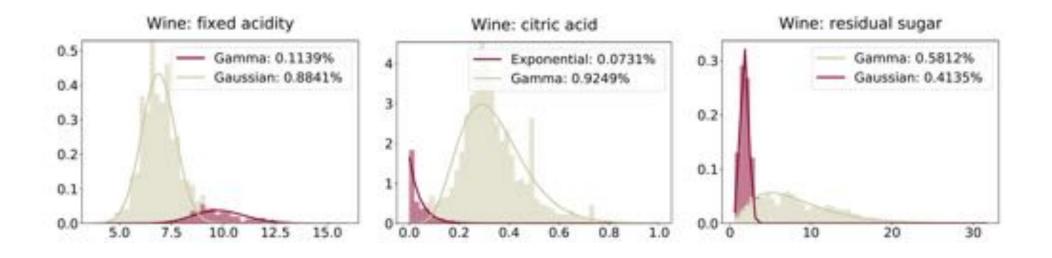
Automatic Bayesian Density Analysis



Bayesian discovery of statistical types and parametric forms of variables

Type-agnostic deep probabilistic learning

Automatic Bayesian Density Analysis



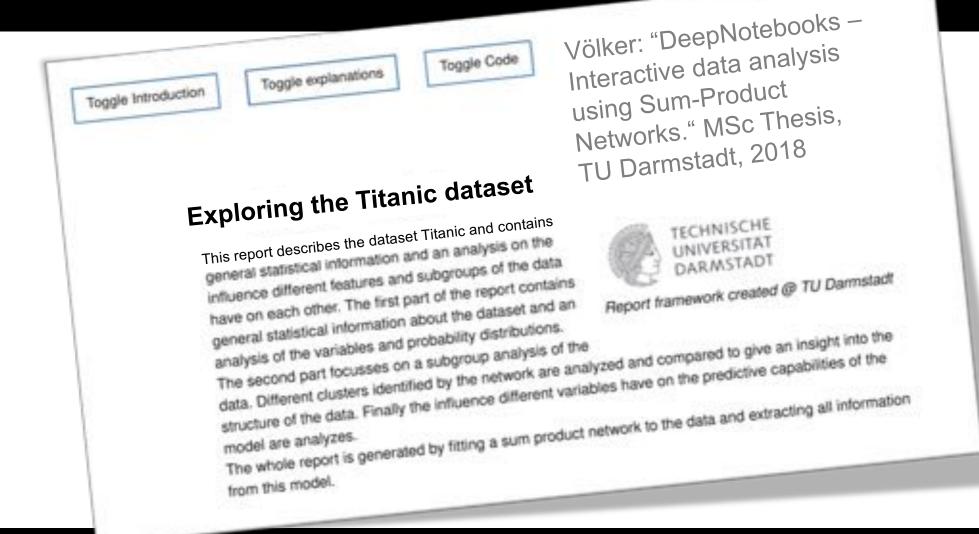
... can automatically discovers the statistical types and parametric forms of the variables

Automatic Bayesian Density Analysis

		transductive setting								
		10%			50%			70%-10%-20%		
	ISLV	ABDA	MSPN	ISLV	ABDA	MSPN	ABDA	MSPN		
Abalone	-1.15 ± 0.12	-0.02 ± 0.03	0.20	-0.89 ± 0.36	-0.05+0.02	0.14	2 22+0 02	9.73		
Adult		-0.60 ± 0.02	-3.46		-0.69 ± 0.01	-5.83	-5.91 ± 0.01	-44.07		
Australian	-7.92 ± 0.96	-1.74 ± 0.19	-3.85	-9.37 ± 0.69	-1.63 ± 0.04	-3.76	-16.44 ± 0.04	-36.14		
Autism	-2.22 ± 0.06	-1.23 ± 0.02	-1.54	-2.67 ± 0.16	-1.24 ± 0.01	-1.57	-27.93 ± 0.02	-39.20		
Breast	-3.84 ± 0.05	-2.78 ± 0.07	-2.69	-4.29 ± 0.17	-2.85 ± 0.01	-3.06	-25.48 ± 0.05	-28.01		
Chess	-2.49 ± 0.04	-1.87 ± 0.01	-3.94	-2.58 ± 0.04	-1.87 ± 0.01	-3.92	-12.30 ± 0.00	-13.01		
Crx	-12.17 ± 1.41	-1.19 ± 0.12	-3.28	-11.96 ± 1.01	-1.20 ± 0.04	-3.51	-12.82 ± 0.07	-36.26		
Dermatology	-2.44 ± 0.23	-0.96±0.02	-1.00	-3.57 ± 0.32	-0.99 ± 0.01	-1.01	-24.98 ± 0.19	-27.71		
Diabetes	-10.53 ± 1.51	-2.21 ± 0.09	-3.88	-12.52 ± 0.52	-2.37 ± 0.09	-4.01	-17.48 ± 0.05	-31.22		
German	-3.49 ± 0.21	-1.54 ± 0.01	-1.58	-4.06 ± 0.28	-1.55 ± 0.01	-1.60	-25.83 ± 0.05	-26.05		
Student	-2.83 ± 0.27	-1.56 ± 0.03	-1.57	-3.80 ± 0.29	-1.57 ± 0.01	-1.58	-28.73 ± 0.10	-30.18		
Wine	-1.19 ± 0.02	$\textbf{-0.90}{\scriptstyle \pm 0.02}$	-0.13	$\textbf{-1.34}{\scriptstyle\pm0.01}$	-0.92 ± 0.01	-0.41	-10.12 ± 0.01	-0.13		
wins	0	9	3	0	10	2	10	2		

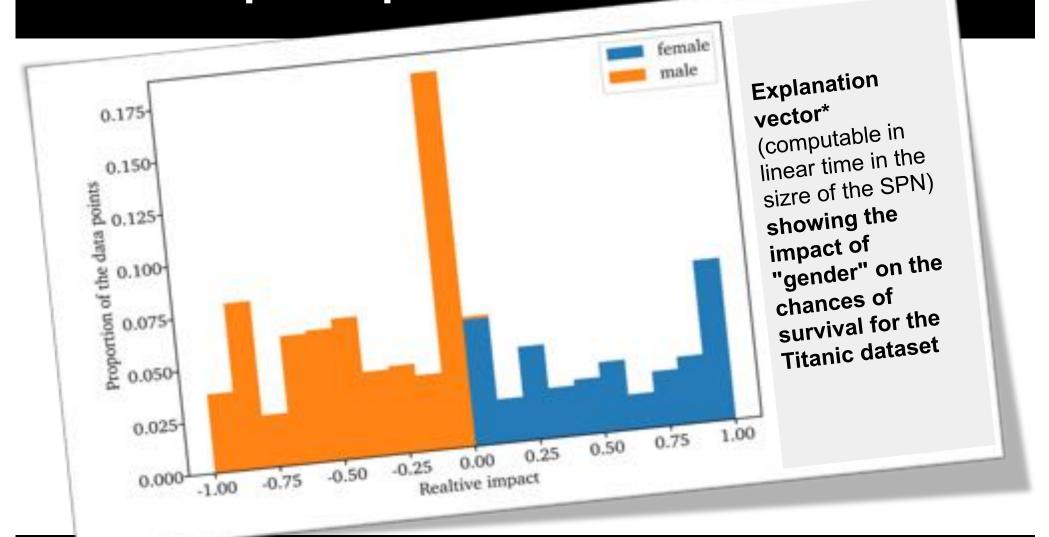
... but also models its uncertainty about the statistical types and parametric forms, which can lead to better models

The machine understands the data with few expert input ...



...and can compile data reports automatically

*[Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, Müller JMLR 11:1803-1831, 2010] **The machine understands the data** with no expert input



...and can compile data reports automatically

What have we learnt about SPNs?

Sum-product networks (SPNs)

- DAG of sums and products
- They are instances of Arithmetic Circuits (ACs)
- Compactly represent partition function
- Learn many layers of hidden variables

Efficient marginal inference

Easy learning

Can outperform well-known alternatives

Take-away messges of Part I

- Graphical models are great to deal with probability distributions
- To make them "tractable" we can employ symmetries
- Or we build directly "tractable" graphical models, i.e., computation graphs as in TensorFlow but with probabilistic semantics
- This can lead to inference on the device and can free the user from making assumptions on the statistical form of the data

Lifted Statistical Machine Learning

Computational modeling of complex AI systems that learn and think

Part II: Statistical Relational AI

Thanks to Babak Ahmadi, Vincent Conitzer, Rina Dechter, Luc De Raedt, Pedro Domingos, Peter Flach, Dieter Fensel, Florian Ficher, Vibhav Gogate, Carlos Guestrin, Daphen Koller, Nir Friedman, Martin Mladenov, Ray Mooney, Sriraam Natarajan, David Poole, Fabrizio Riguzzi, Dan Suciu, Guy van den Broeck, and many others for making their slides publically available Symbolic Complexity Structure Logic Abstraction Resolution Generalization Modules

Numeric Noise Probabilities Values Graphical

Values Graphical Expectation Optimization Regularization

Goals of Part II

Get in touch with

- 1. Statistical Relational Learning and Probabilistic Programming, and
- 2. understand that this covers the whole Al spectrum, leading to Systems Al

Caution! Necessarily incomplete!

Let's consider a simple relational domain: Reviewing Papers

- The grade of a paper at a conference depends on the paper's quality and the difficulty of the conference.
- Good papers may get A's at easy conferences
- Good papers may get D's at top conference
- Weak papers may get B's at good conferences
- . . .

(Reviewing) Bayesian Network

Dandom Variables

Direct Influence								
P(Qual)					P(Diff)			
low	middle	high	Grade	low	middle	high		
0.3	0.5	0.2		0.2	0.3	0.5		

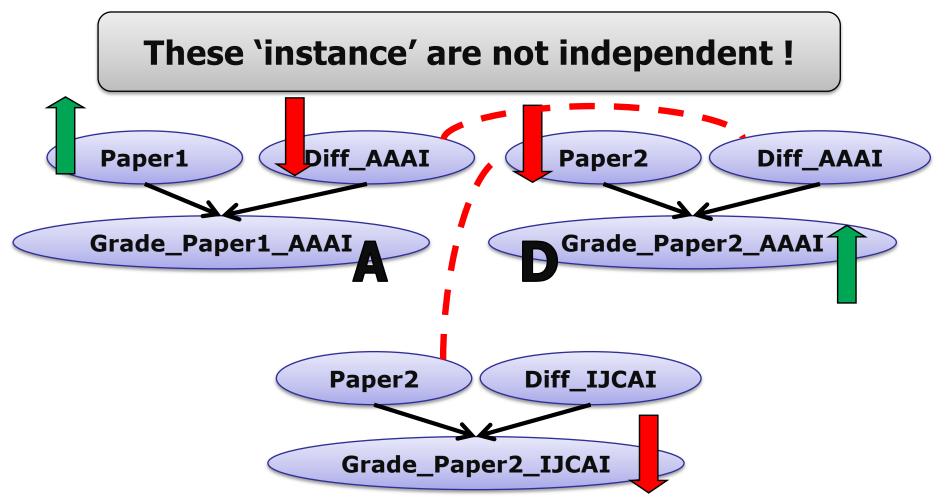
$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | X_{i-1},...,X_1)$$

		P(Grade)						
Qual	Diff	С	b	а				
low	low	0.2	0.5	0.3				
low	middle	0.1	0.7	0.2				

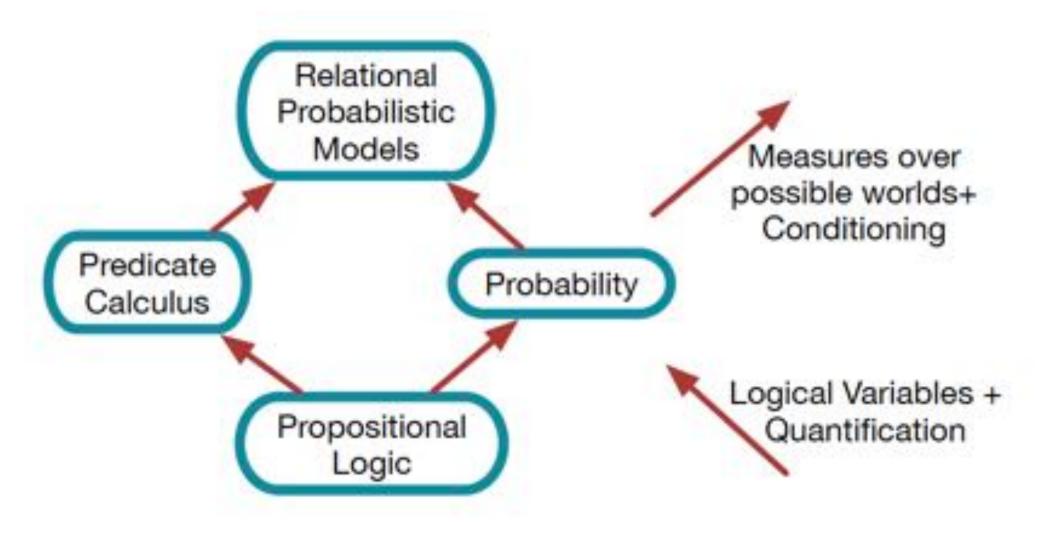
The real world, however, ...

[inspired by Friedman and Koller]

... has inter-related objects



Therefore we want to combine probabilities and logic



Systems AI: the computational and mathematical modeling of complex AI systems.

Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes", Stanford Graduate School of Business, May 2, 2017.https://www.youtube.com/watch?v=vbb-AjiXyh0. But also see e.g. Kordjamshidi, Roth, Kersting: "Systems AI: A Declarative Learning Based Programming Perspective." IJCAI-ECAI 2018.

For Systems AI we have to deeply understand data, knowledge and reasoning in a large number of forms

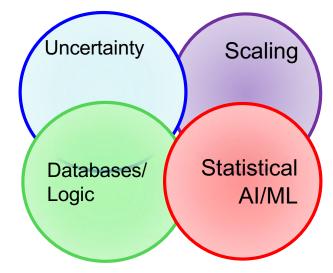
Crossover of Statistical AI/ML with data & programming abstractions

Statistical Relational Artificial Intelligence Logic, Probability, and Computation

Luc de Raolt Keistan Kersting Seicaam Naturijan David Poole building general-purpose thinking and learning machines

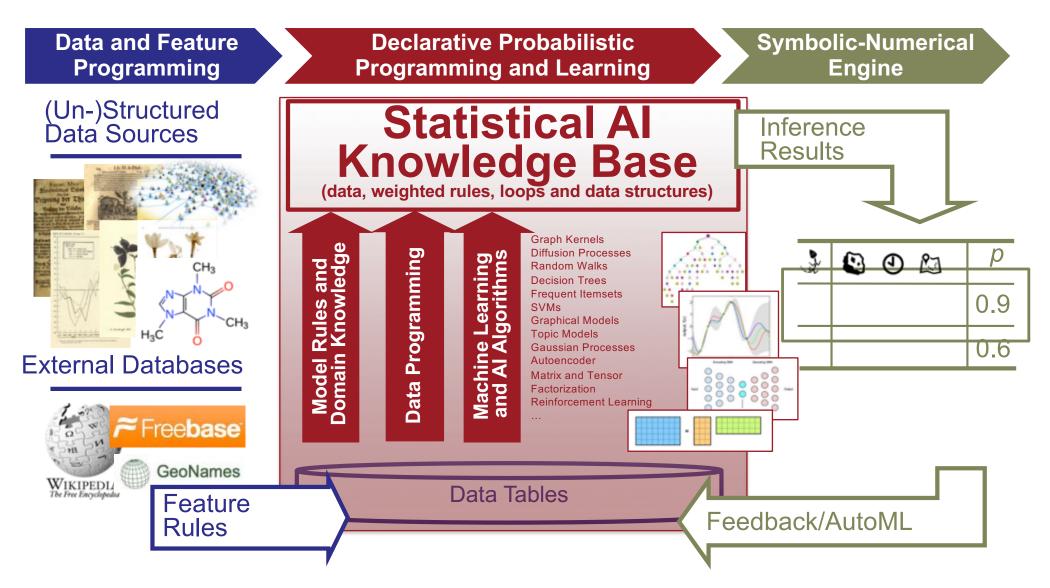
make the AI/ML expert more effective

increases the number of people who can successfully build AI/ML applications



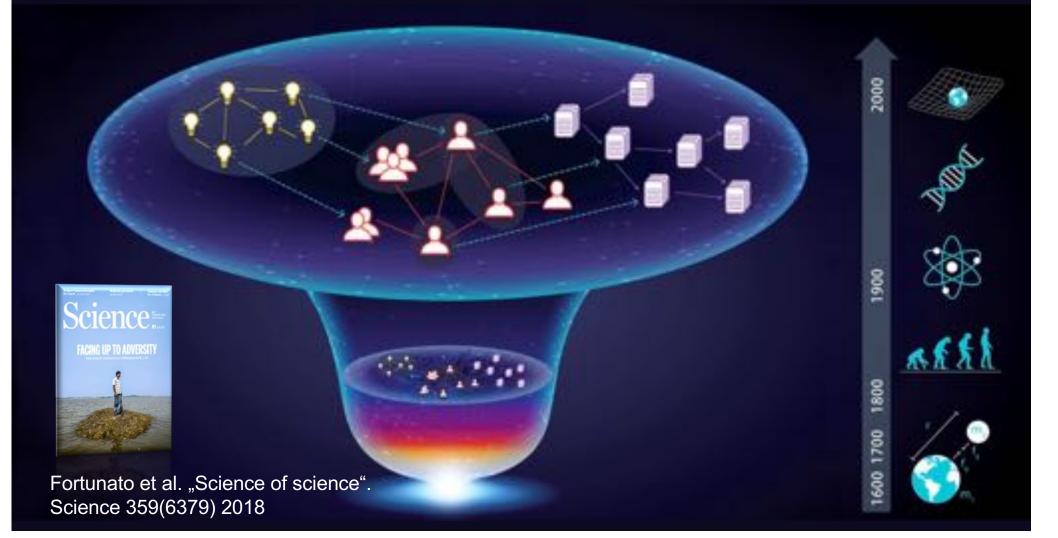
De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

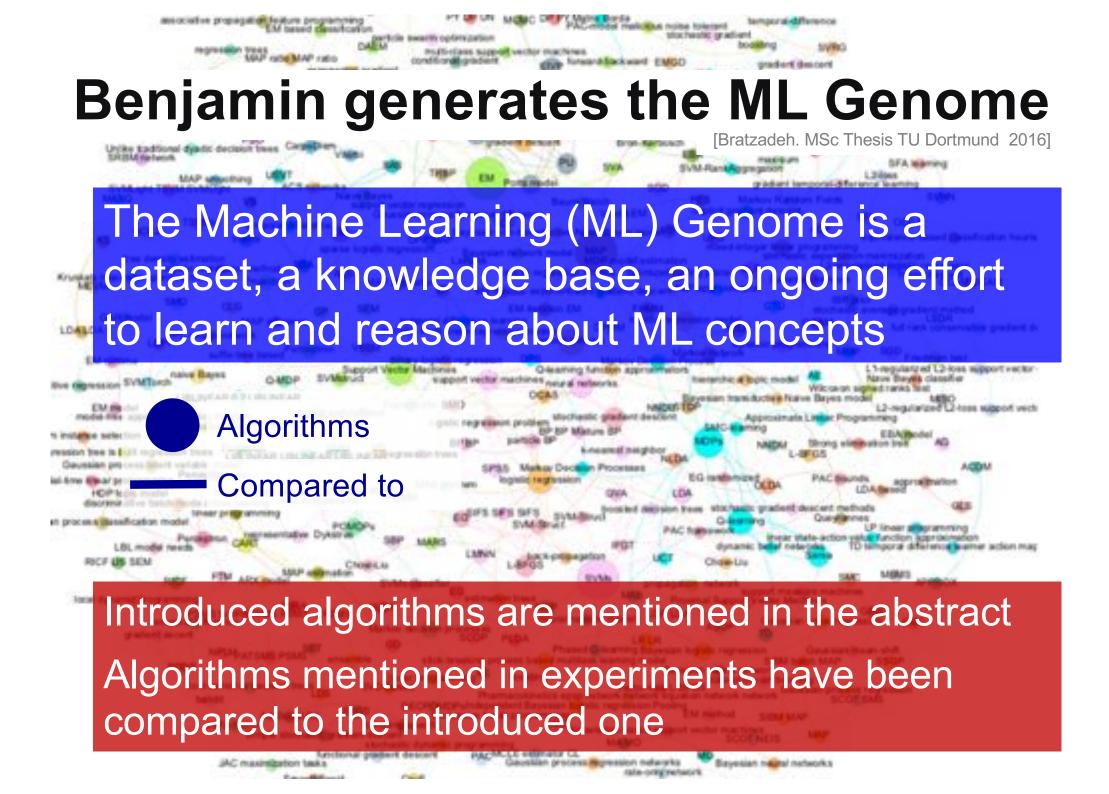
This establishes a novel "Deep Al"



[Ré et al. IEEE Data Eng. Bull.'14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP'14; Natarajan, Soni, Wazalwar, Viswanathan, Kersting Solving Large Scale Learning Tasks'16, Mladenov, Heinrich, Kleinhans, Gonsior, Kersting DeLBP'16, ...

Machine Learning can be seen as an expanding and evolving network of ideas, scholars, and papers. Can machines read this data?





And connects well to database theory

Jim Gray Turing Award 1998 "Automated Programming" Mike Stonebraker Turing Award 2014 "One size does not fit all"

... and cognitive science

"How do we humans get so much from so little?" and by that I mean how do we acquire our understanding of the world given what is clearly by today's engineering standards so little data, so little time, and so little energy.

Lake, Salakhutdinov, Tenenbaum, Science 350 (6266), 1332-1338, 2015 Tenenbaum, Kemp, Griffiths, Goodman, Science 331 (6022), 1279-1285, 2011

But first let us clarify how people view relations in this context **SO WHAT ARE RELATIONS?**

What are Relations?

There are several types of relations and in turn there are several views on what (statitical) relational learning is

- 1. Relations provide additional correlations/ regularization
 - If two words occure frequently in the same context (page, paragraph, sentence, ...) then there must be some semantic relation between them
- 2. Often extensional (data) only, for one relation
 - Covariance function, distance functions, kernel functions, graphs, tensors, random walks with restarts...

What are Relations?

3. Relations are symmetries/redundancies in the model

E.g. lifted inference based on bisimulation

4. Hypergraph representations of data

- Multiple (extensional) relations
- Random walks with restarts as similarity measure, produce path features, tensor-based embeddings
- 5. Full-fledged relational (or logical) knoweldge as considered in this tutorial
 - Multiple (often typed) relations
 - Intensional formulas (often Horn clauses) ancestor(X,Z) ^ parent(Z,Y) ⇒ ancestor(X,Y)

Over the years many SRL frameworks have been proposed: **THE SRL ALPHABET SOUP**

Easy to miss the big picture but thankfully they all can be structured along some

KEY REPRESENTATION DIMENSIONS

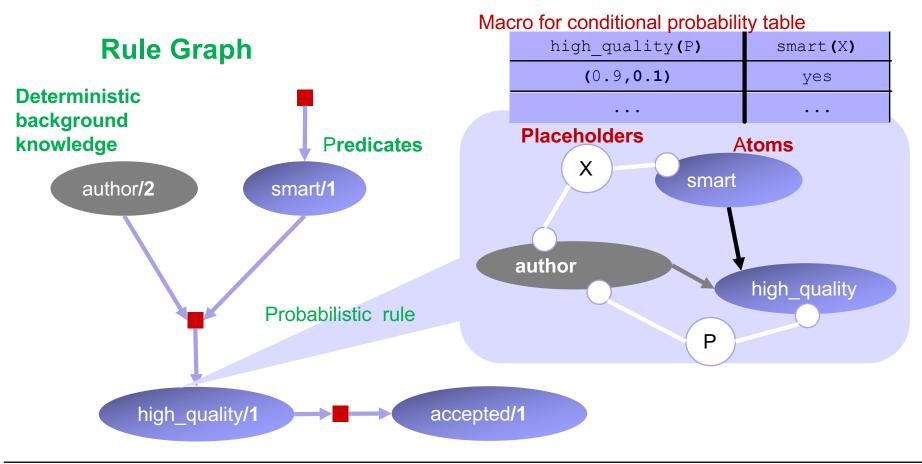
Key Dimensions with some prototypes

Directed: Probabilistic Relational Models (PRMs) Bayesian logic Programs (BLPs)

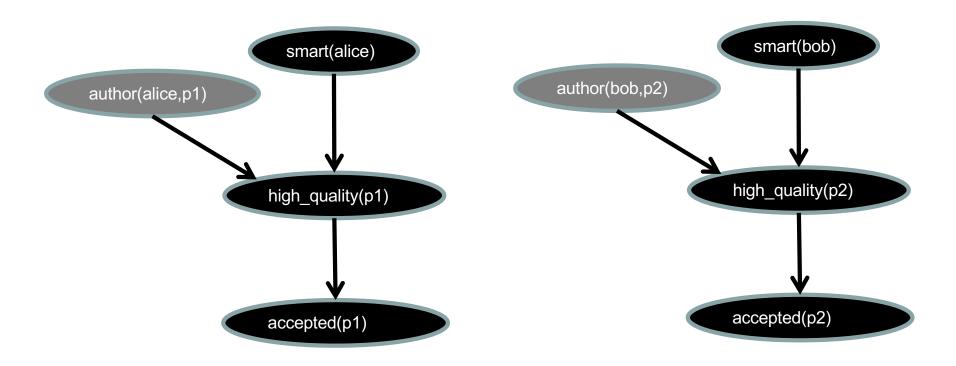
[Getoor et al. 2002; Kersting, De Raedt 2007]

 $\forall x \ author(x, p) \land smart(x) \Rightarrow high_quality(p)$

 $\forall x high_quality(p) \Rightarrow accepted(p)$

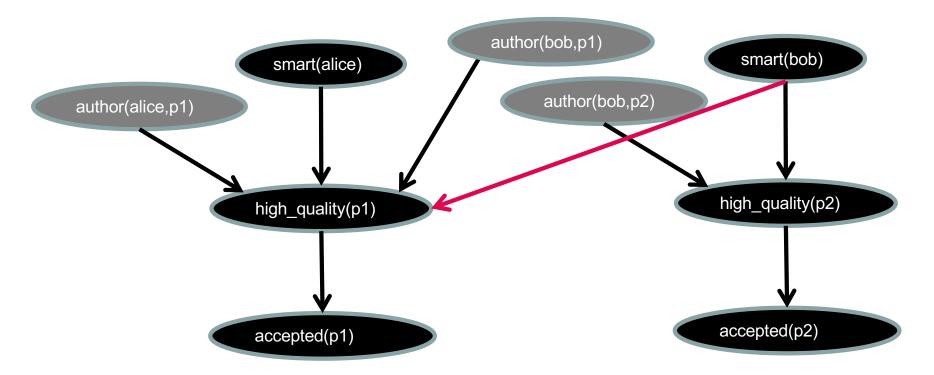


Inference on BN constructed by instantiating the rules/ macros using back- or forward chaining



So, we can deal with a variable number of objects. The induced BN depends on the domain elements and the background knowledge we have.

Inference on BN constructed by instantiating the rules/ macros using back- or forward chaining

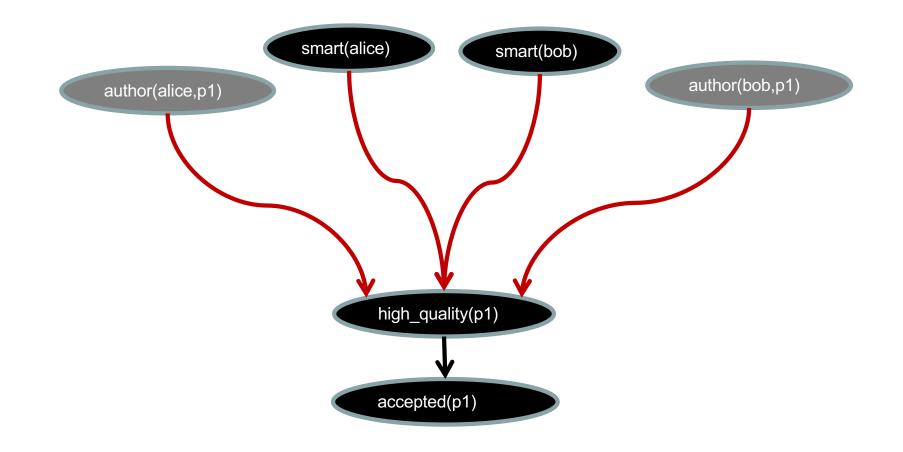


But what happens if we also have author(bob,p1)?

So, we can deal with a variable number of objects. The induced BN depends on the domain elements and the background knowledge we have.

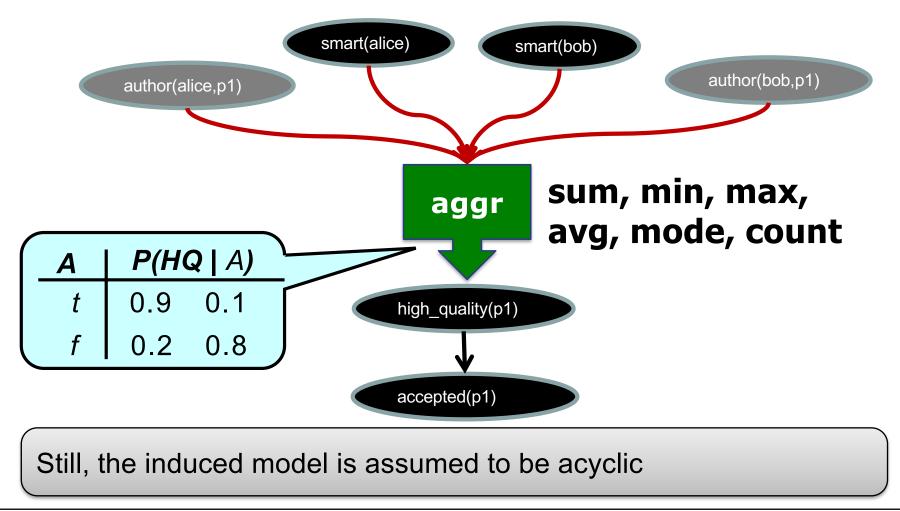
Directed: Aggregate Dependencies

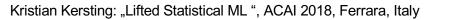
We have several conditional probabilities instantiated from the same clause, which we have to aggregate



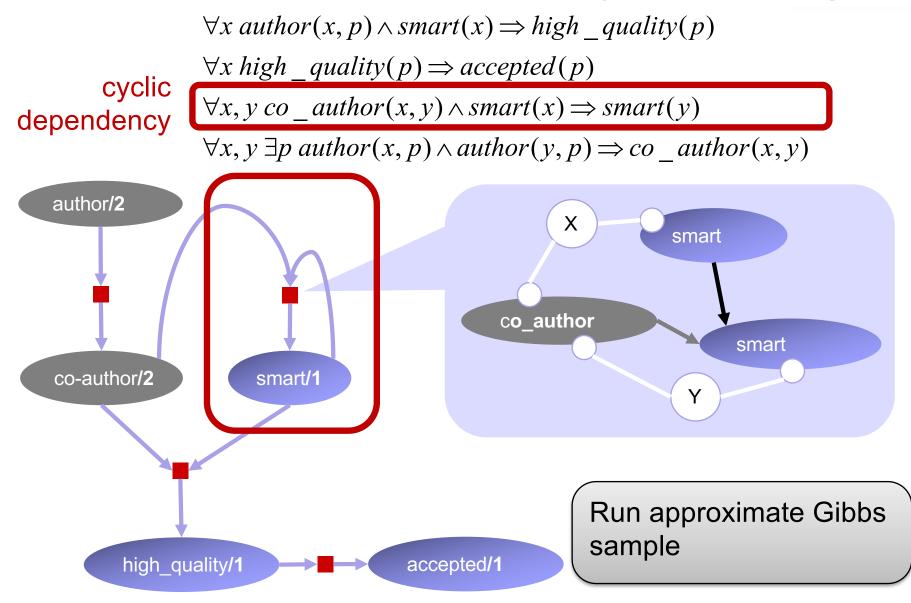
Directed: Aggregate Dependencies

We have several conditional probabilities instantiated from the same clause, which we have to aggregate

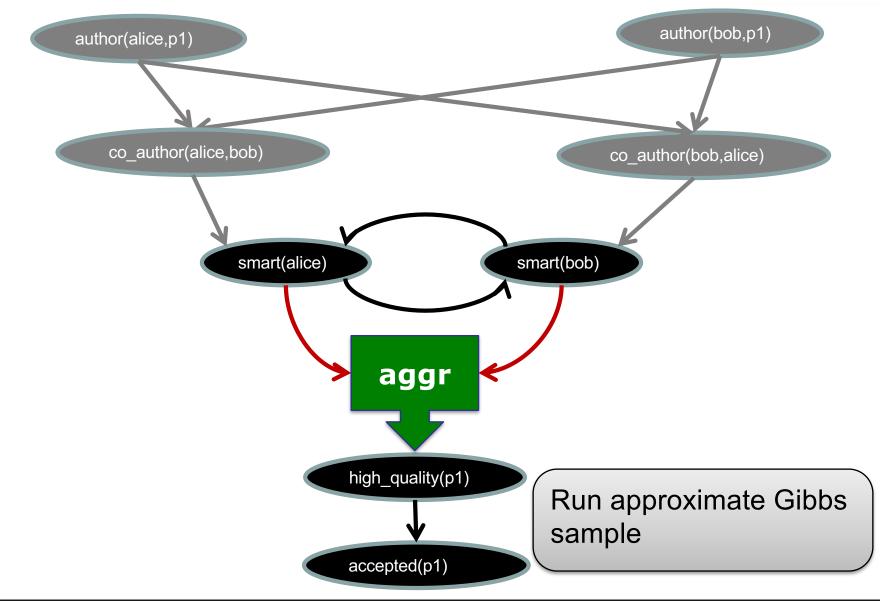




Option 1 : Relational Dependency Networks (RDNs)



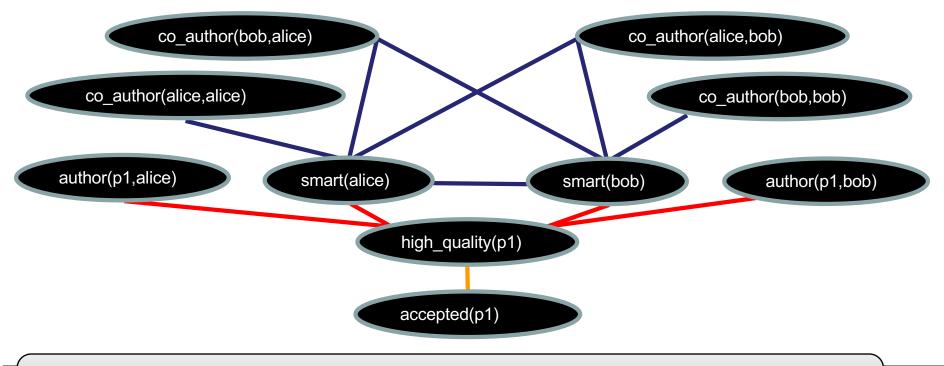
Option 1 : Relational Dependency Networks (RDNs)



Option 2: Markov Logic Networks

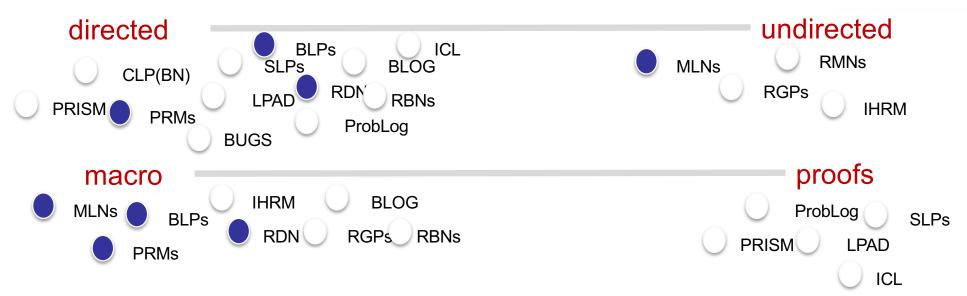
Suppose we have constants: alice, bob and p1

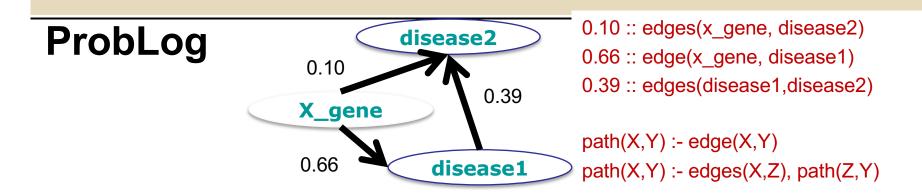
- 1.5 $\forall x \ author(x, p) \land smart(x) \Rightarrow high_quality(p)$
- 1.1 $\forall x high_quality(p) \Rightarrow accepted(p)$
- 1.2 $\forall x, y \ co _author(x, y) \Rightarrow (smart(x) \Leftrightarrow smart(y))$
- ∞ $\forall x, y \exists p author(x, p) \land author(y, p) \Rightarrow co_author(x, y)$



Compile to an undirected model

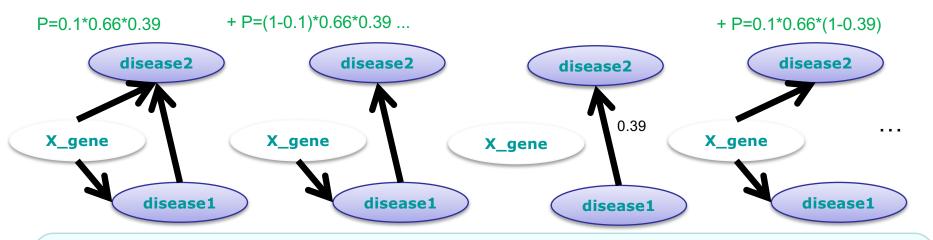
Key Dimensions with some prototypes



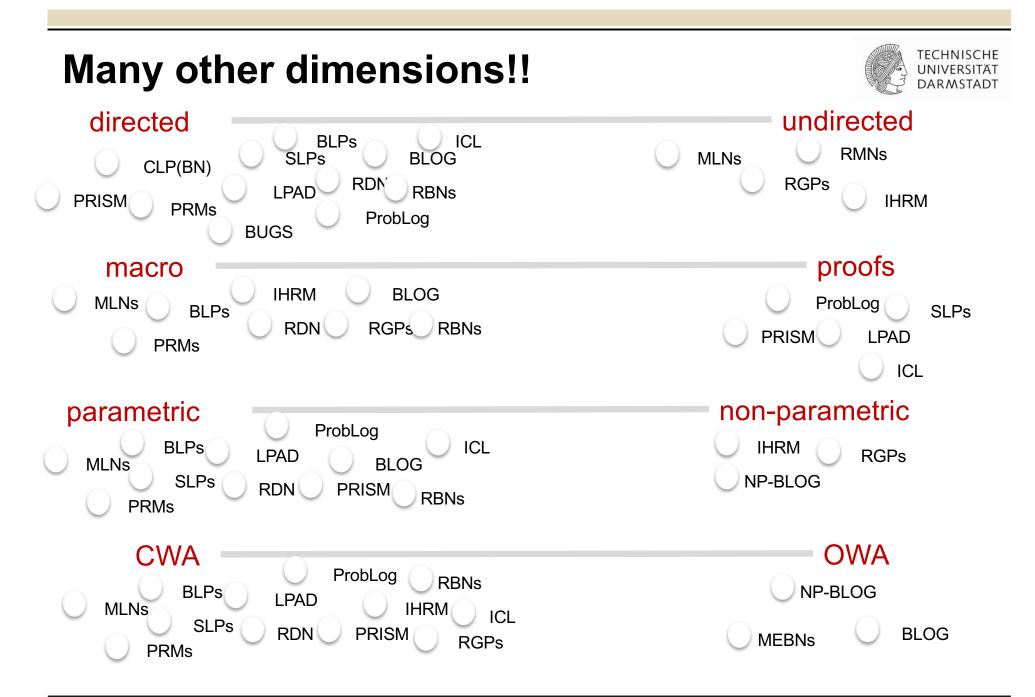


Label of a clause/fact c is the probability that c belongs to the target program; Facts/clauses independent of each other Defines a distribution over programs

P(path(x_gene,disease2)) = sum of probs of all programs that entail the query



Exponentially many subprograms! To avoid explosion, consider proofs/paths only + store them e.g. in a BDD in order to count correctly



And actually they span the whole Al spectrum

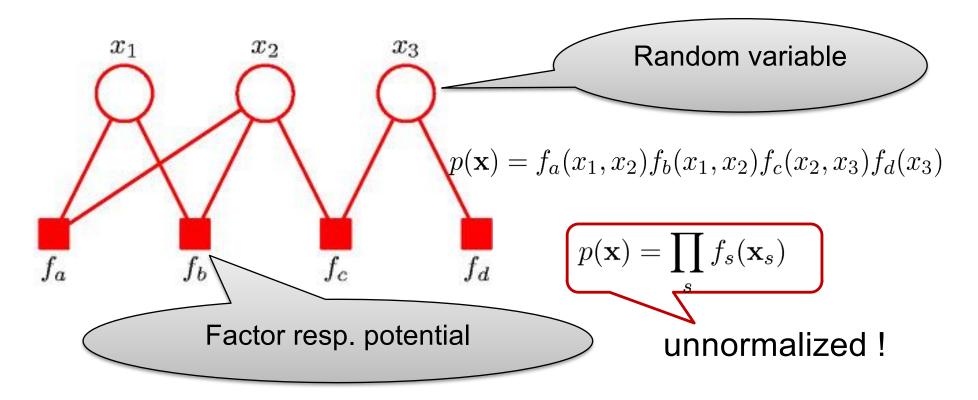
Relational topic models Mixed-membership models **Relational Gaussian processes Relational reinforcement learning** (Partially observable) MDPs Systems of linear equations Kalman filters Declarative information networks

. .

So, should we worry about the soup?

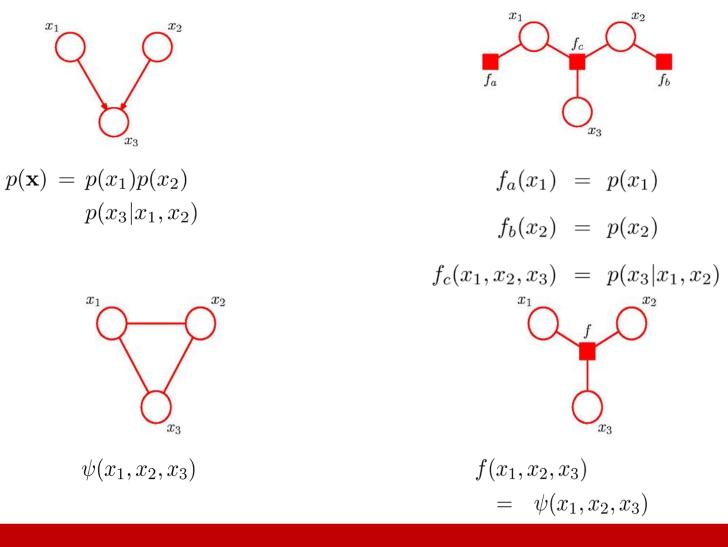
This soup boiled down to Graphical Models as intermediate representation

Distributions can naturally be represented as Factor Graphs



There is an edge between a circle and a box if the variable is in the domain/scope of the factor

Factor Graphs from Graphical Models



Similar "boiling down" process is going on in StarAI!

Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

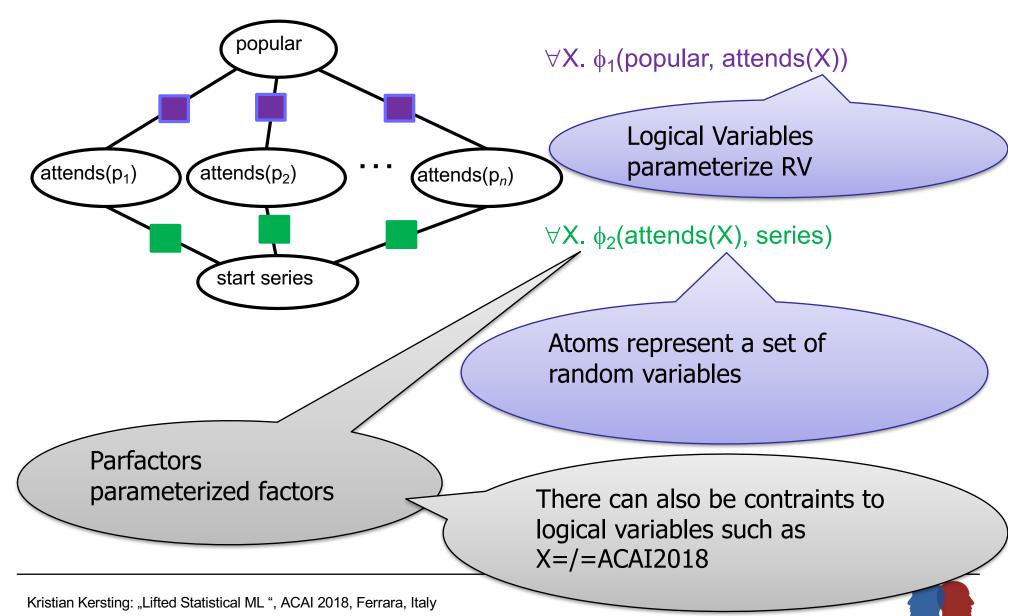
Boiled-Down SRL Alphabet Soup

Given a relational model in your language of choice, a set of constants and a query, **compile** everything **into an intermediate respresentation**

(logically parameterized) Factor graphs
BDDs, Artihmetic Circuits, d-DNNFs, ...
Weighted CNFs

Run (lifted) inference

Rules + Potential: Logically Parameterized Factors (parfactors) [Poole 2003; de Salvo Braz et al. 2005,...]

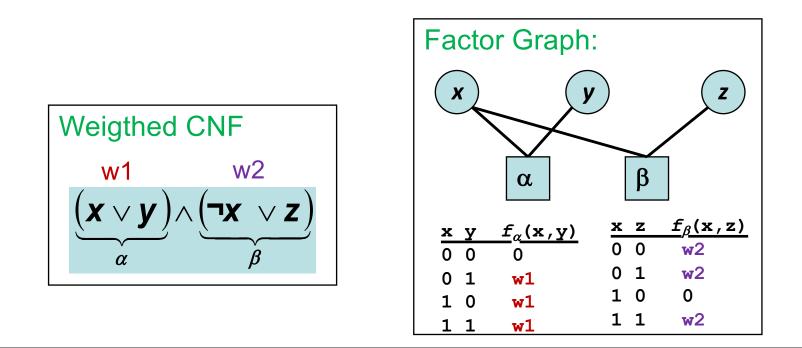


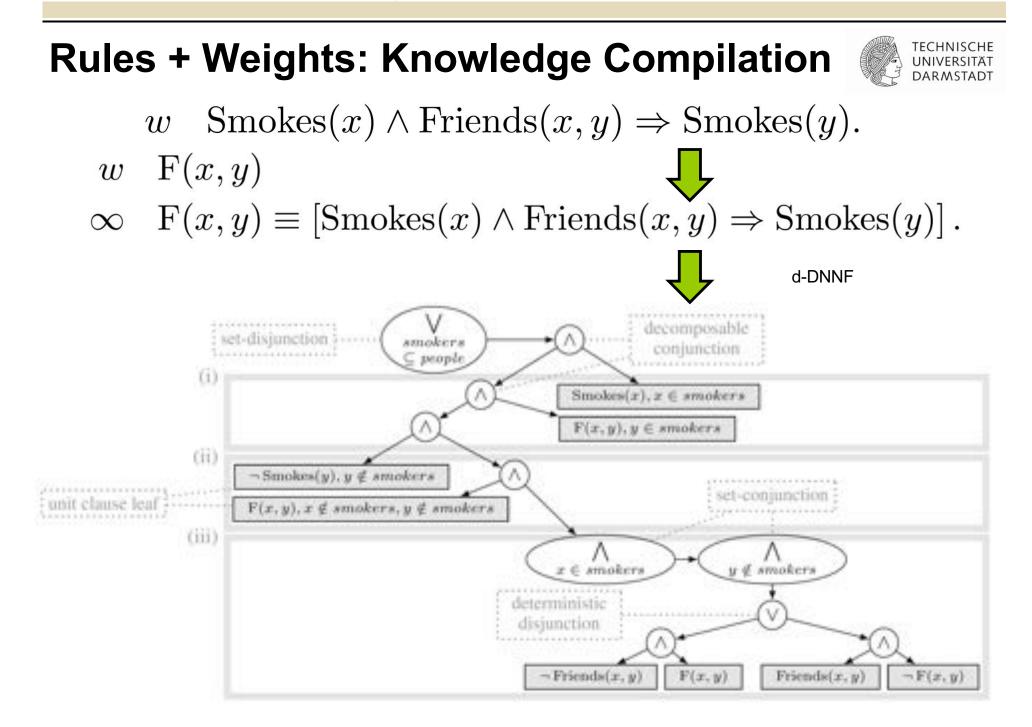
Rules + Weights: Weighted CNF

Weighted MAX-SAT as mode finding for log-linear distributions Each configuration has a cost: the sum of the weights of the unsatisfied (ground) clauses.

An infinite cost gives a 'hard' clause.

Goal: find an assignment with minimal cost.





And even low-level C/C++ programs

 $\{\langle \{x,m\}, r(x,m) \land s(x,m), 1.2 \rangle, \langle \{x,m\}, s(x,m) \land t(x), 0.2 \rangle\}$

- 1. v2=0;
- 2. for (int i = 0; i <= 2; i++){

6.
$$v^2 += choose(2, i) * pow(2, 2-i)$$

What have we learnt so far in Part II?

There are several ways to specify relational probabilistic models

The goal is not to have a probabilistic characterization

Exising Frameowrks highlight different aspects of relational modeling

Semantically this soup boiled down to weighted CNFs, factor graphs, parfactors, diagrams and even program code

How do we learn relational models?

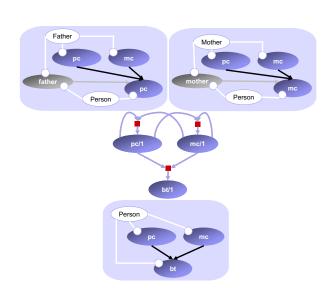
Goals

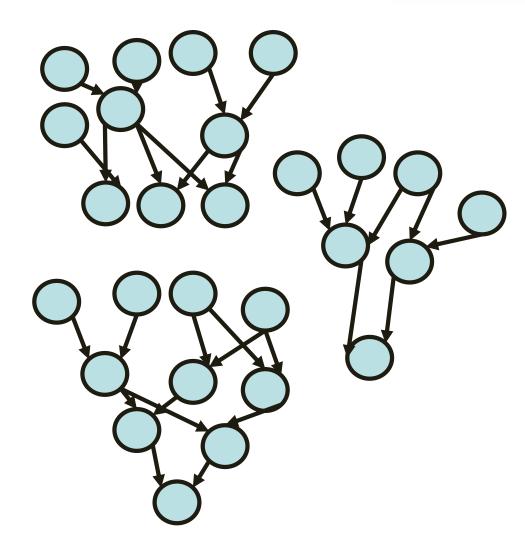
- Parameter Estimation
- (Vanilla) relational learning approach
- •nFOIL, Hypergraph Lifting, and Boosting

PARAMETER ESTIMATION FOR RELATIONAL MODELS

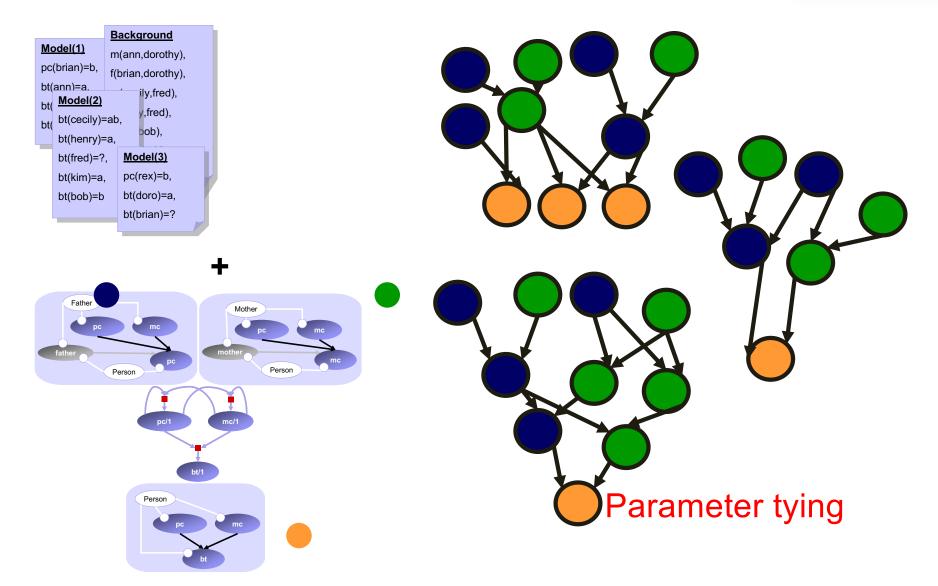
Relational Parameter Estimation

	Background				
Model(1)	m(ann.dorothy),				
pc(brian)=b,					
• • • •	f(brian,dorothy),				
bt(ann)=a.	ily,fred),				
bt(Model(2)	<u> </u>				
bt(bt(cecily)=	=ab, ^y ,fred),				
bt(henry)=	hob).				
bt(fred)=?	?, <u>Model(3)</u>				
bt(kim)=a	a, pc(rex)=b,				
bt(bob)=b	bt(doro)=a,				
	bt(brian)=?				

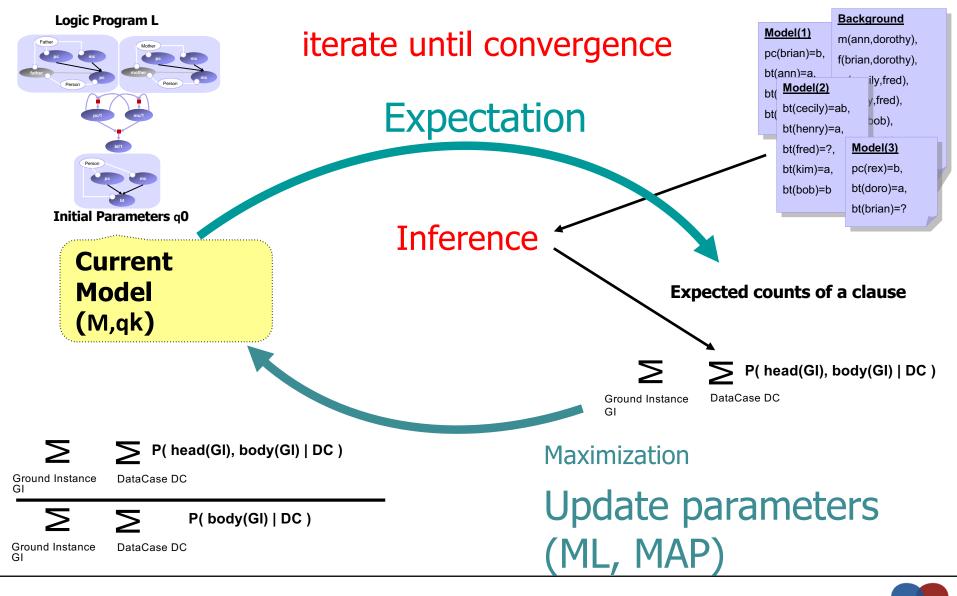




Relational Parameter Estimation

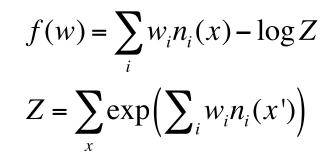


So, we can apply "standard" EM



Generative Learning

Function to optimize:



Gradient:

 $\frac{\partial}{\partial w_j} f(w) = n_j(x) - \frac{1}{Z} \sum_{x'} \exp\left(\sum_i w_i n_i(x')\right) n_j(x')$ $= n_j(x) - \sum_{x'} P(x') n_j(x')$ $= n_j(x) - E[n_j(x)]$

Counts in training data

Weighted sum over all possible worlds No evidence, just sets of constants Very hard to approximate

It is #P-complete to count the number of true groundings. Therefore, one often sticks to approximations

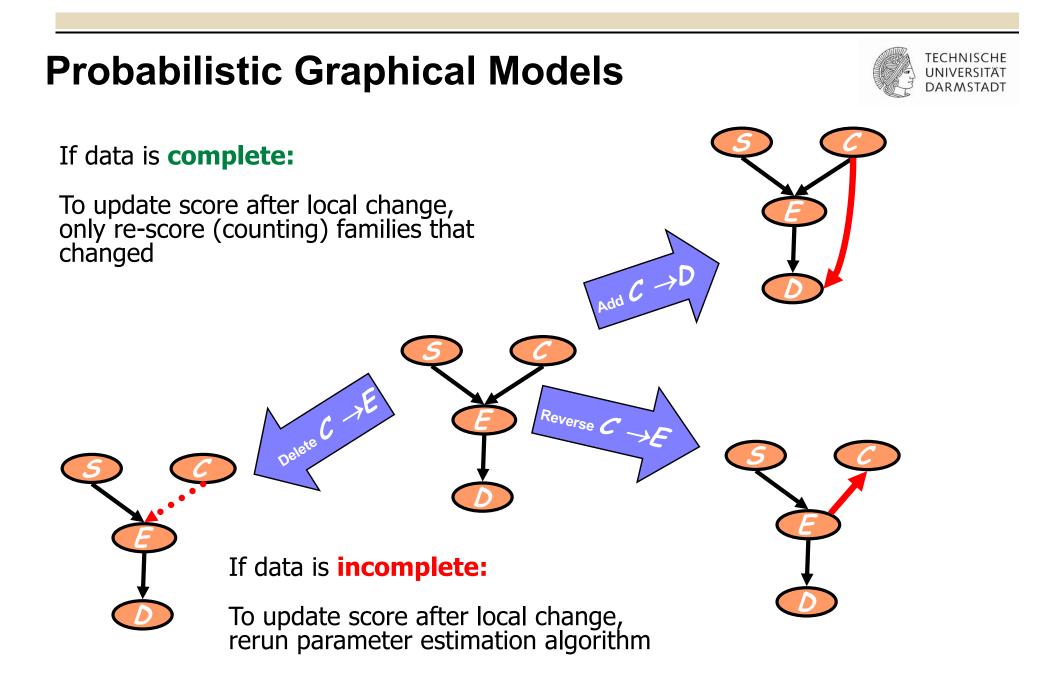
Pseudo-likelihood

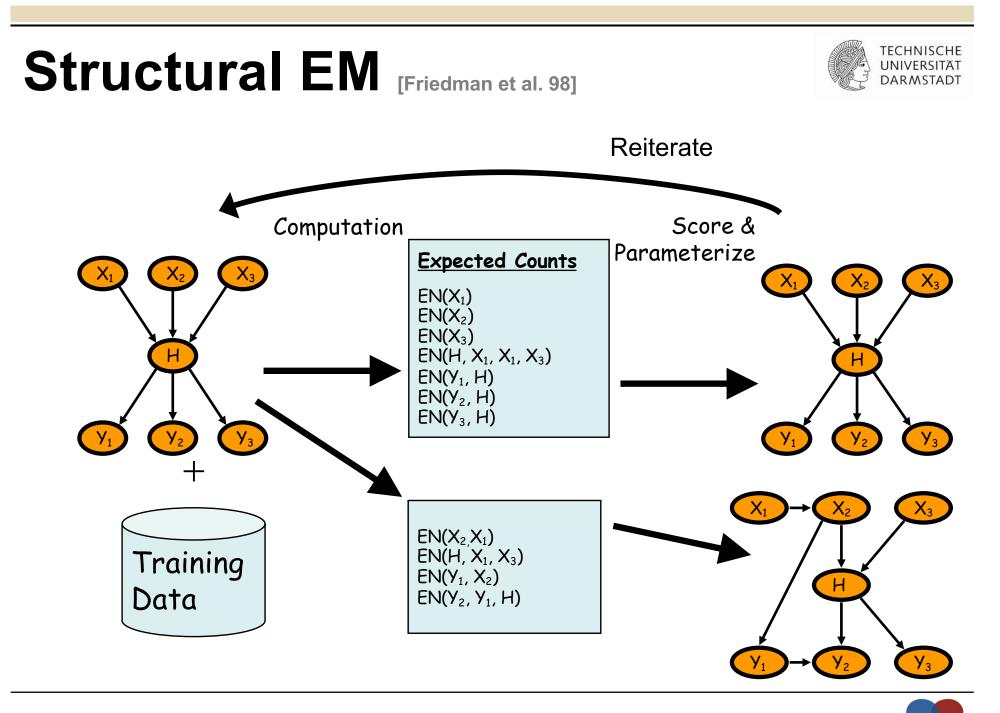
Function to optimize: $PL(x) = \prod_{l} P(X_{l} = x_{l} \mid MB(x_{l}))$ $\log PL(x) = \sum_{l} \log P(X_l = x_l \mid MB(x_l))$ $P(X_{l} = x_{l} | MB(x_{l})) = \frac{P(x)}{P(x_{[X_{l}=0]}) + P(x_{[X_{l}=1]})}$ $1/Z \exp(\Sigma w_i n_i(x))$ $1/Z \exp(\Sigma w_i n_i(x_{[X_i=0]})) + 1/Z \exp(\Sigma w_i n_i(x_{[X_i=1]}))$ Gradient: $\frac{\partial}{\partial w_j} \log PL(x) = \sum_l n_j(x) - P(X_l = 0 | MB(X_l)) n_j(x_{[X_l = 0]}) - P(X_l = 1 | MB(X_l)) n_j(x_{[X_l = 1]})$ $= \sum n_{i}(x) - E_{x'_{i}}[n_{i}(x_{[X_{i}=x'_{i}]})]$

Pseudo-likelihood

Function to optimize: $PL(x) = \prod_{l} P(X_{l} = x_{l} \mid MB(x_{l}))$ $\log PL(x) = \sum_{i} \log P(X_i = x_i \mid MB(x_i))$ $P(X_{l} = x_{l} | MB(x_{l})) = \frac{P(x)}{P(x_{[X_{l}=0]}) + P(x_{[X_{l}=1]})}$ While effective, still hard to count in many data sets $(X_{1}=11))$ Gr Approximate counting techniques exist (Sarkhel et al. AAAI 2016, Das et al. SDM 2016) ∂W_i $-P(X_{l} = 1 | MB(X_{l})) n_{i}(x_{[X_{l} = 1]})$ $= \sum n_{i}(x) - E_{x'_{i}}[n_{i}(x_{[X_{i}=x'_{i}]})]$

STRUCTURE LEARNING FOR RELATIONAL MODELS





Inductive Logic Programming (ILP) = Machine Learning + Logic Programming

The Problem Specification

[Muggleton, De Raedt JLP96]

Given:

- Examples: first-order atomic formulas (atoms), each labeled positive or negative.
- Background knowledge: definite clause (if-then rules) theory.
- Language bias: constraints on the form of interesting new rules (clauses).

ILP Specification (Continued)

Find:

A hypothesis *h* that meets the language constraints and that, when conjoined with *B*, implies (lets us prove) all of the positive examples but none of the negative examples.

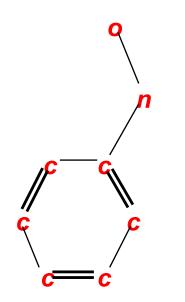
To handle real-world issues such as noise, we often relax the requirements, so that *h* need only entail significantly more positive examples than negative examples.

ILP Specification (illustrated)

<u>Find</u> set of general rules

mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)
mutagenic(X) :- atom(X,A,n),...

Examples E Pos(mutagenic(m1) Pos(mutagenic(m2) Neg(mutagenic(m3)



Background Knowledge B

 $\begin{array}{ll} molecule(m1) & molecule(m2) \\ atom(m1,a11,c) & atom(m2,a21,o) \\ atom(m1,a12,n) & atom(m2,a22,n) \\ bond(m1,a11,a12) & bond(m2,a21,a22) \end{array}$

....

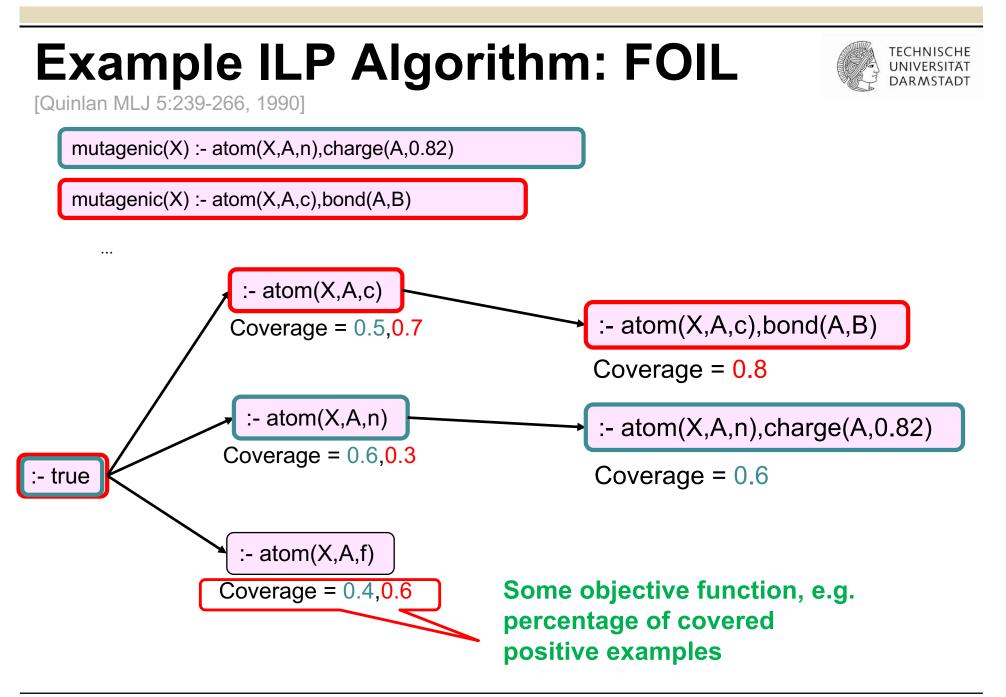
A Common Approach

Use a greedy covering algorithm.

Repeat while some positive examples remain uncovered (not entailed):

- 1. Find a *good clause* (one that covers as many positive examples as possible but no/few negatives).
- 2. Add that clause to the current theory, and remove the positive examples that it covers.

ILP algorithms use this approach but vary in their method for finding a *good clause*.



VANILLA STRUCTURE LEARNING FOR PROBABILISTIC RELATIONAL MODELS

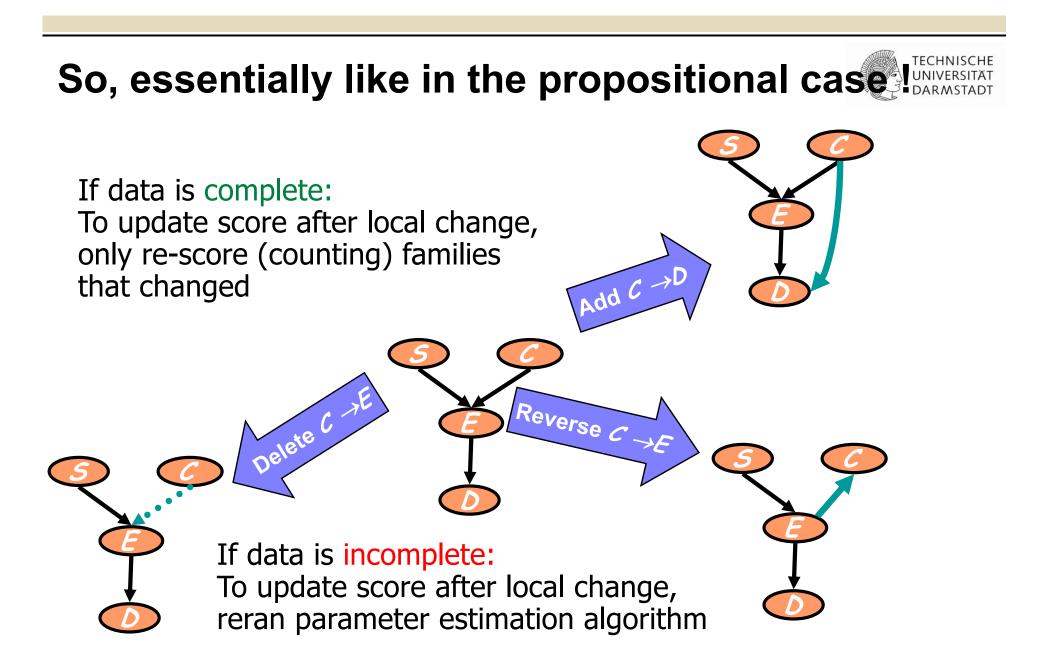
Vanilla SRL Approach [De Raedt, Kersting ALT04] Image: De Raedt, Kersting ALT04 mutagenic(X) :- atom(X,A,n),charge(A,0.82) =0.882 mutagenic(X) :- atom(X,A,c),bond(A,B) =0.882

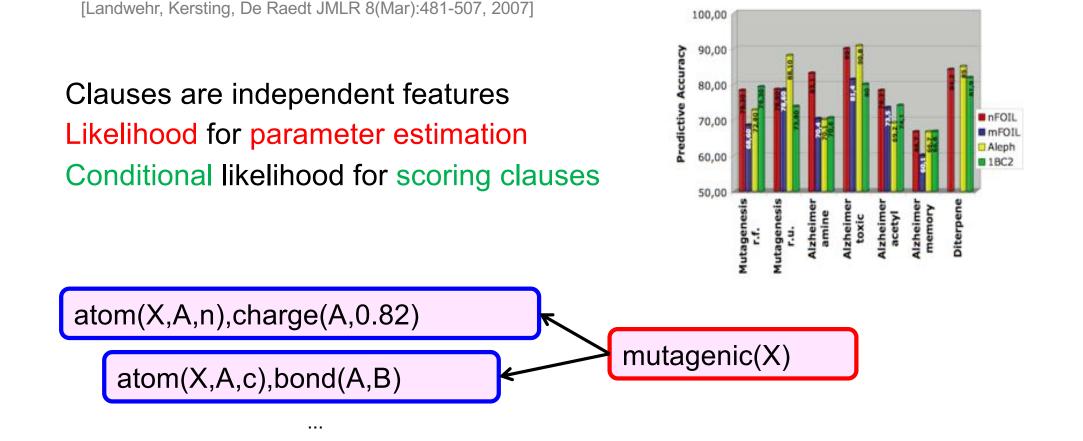
Traverses the hypotheses space a la ILP Replaces ILP's 0-1 covers relation by a "smooth", probabilistic one [0,1]

$$\operatorname{cover}(e, H, B) = P(e|H, B)$$

 $\operatorname{cover}(E, H, B) = \prod_{e \in E} \operatorname{cover}(e, H, B)$

. . .





P(truth value clauses|truth value target predicate) x P(truth value target predicate)

nFOIL = FOIL + Naive Bayes

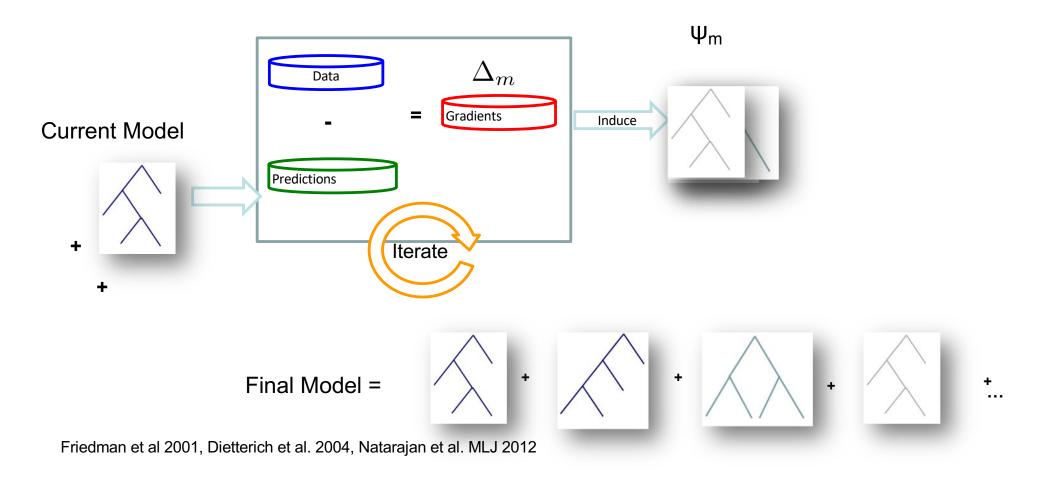
TECHNISCHE

UNIVERSITÄT DARMSTADT

STRUCTURE LEARNING MARKOV LOGIC NETWORKS

Ensemble Statistical Relational Learning, here Functional Gradient Boosting

Learn multiple weak models rather than a single complex model



Functional Gradients for SRL Models

• Probability of an example

$$P(x_i = true | \mathbf{Pa}(x_i)) = \frac{e^{\psi(x_i; \mathbf{Pa}(x_i))}}{e^{\psi(x_i; \mathbf{Pa}(x_i))} + 1}$$

- Functional gradient
 - Maximize

$$LL(\mathbf{X} = \mathbf{x}) = \sum_{x_i \in \mathbf{x}} \log P(x_i | \mathbf{Pa}(x_i))$$

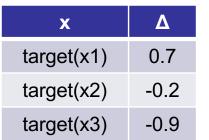
• Gradient of log-likelihood w.r.t ψ

$$\Delta(x_i) = \frac{\partial \log P(\mathbf{X} = \mathbf{x})}{\partial \psi(x_i; \mathbf{Pa}(x_i))} = I(x_i = true; \mathbf{Pa}(x_i)) - P(x_i = true; \mathbf{Pa}(x_i))$$

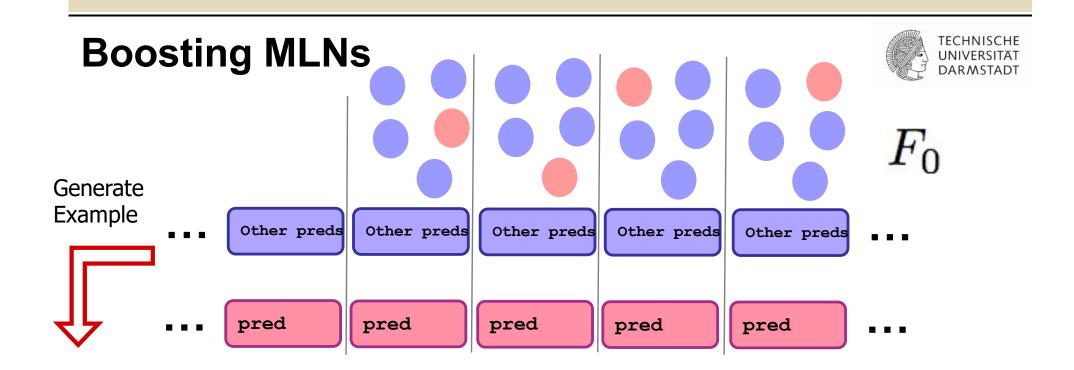
• Sum all gradients to get final $\boldsymbol{\psi}$

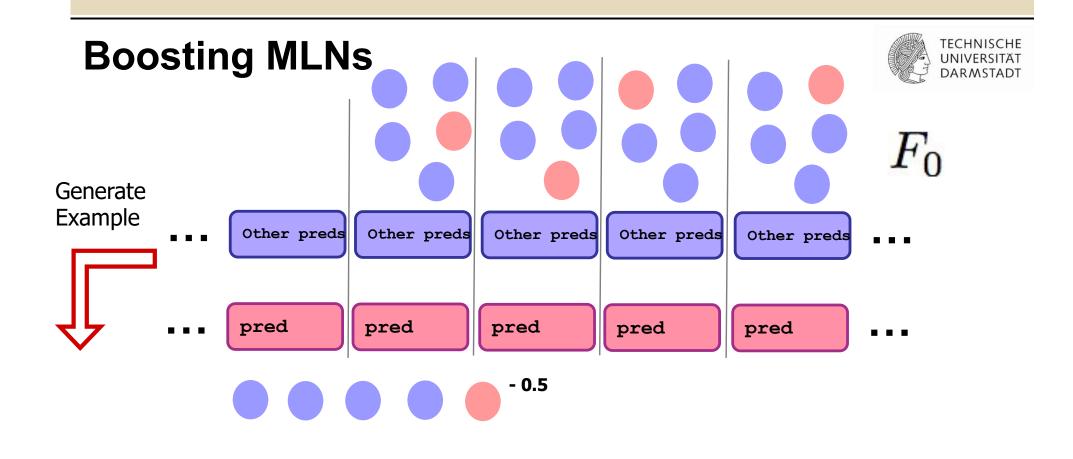
$$\psi_m = \psi_0 + \Delta_1 + \ldots + \Delta_m$$

Can be extended to multiple SRL models & in presence of hidden data

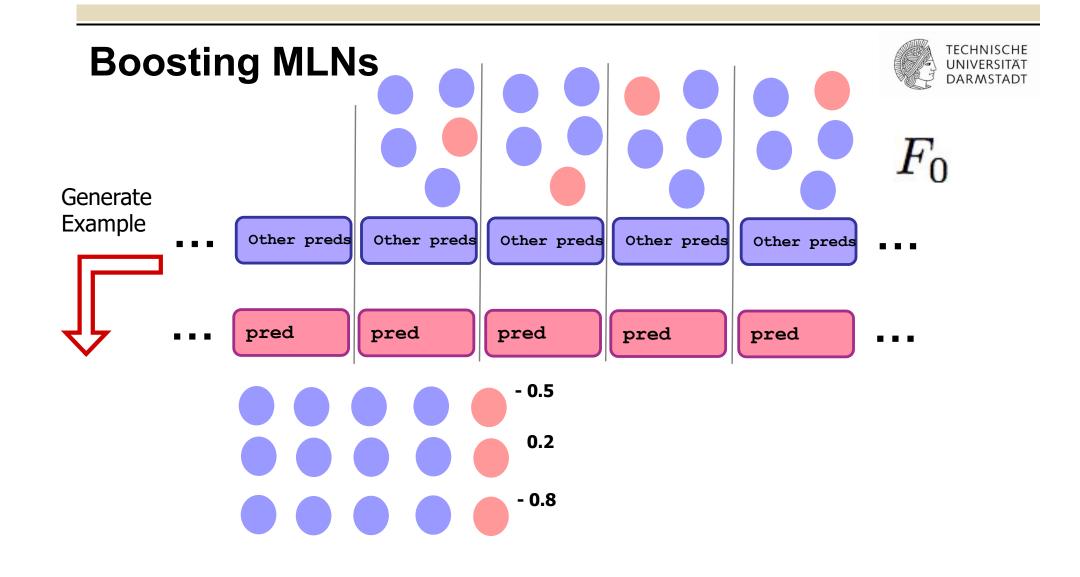


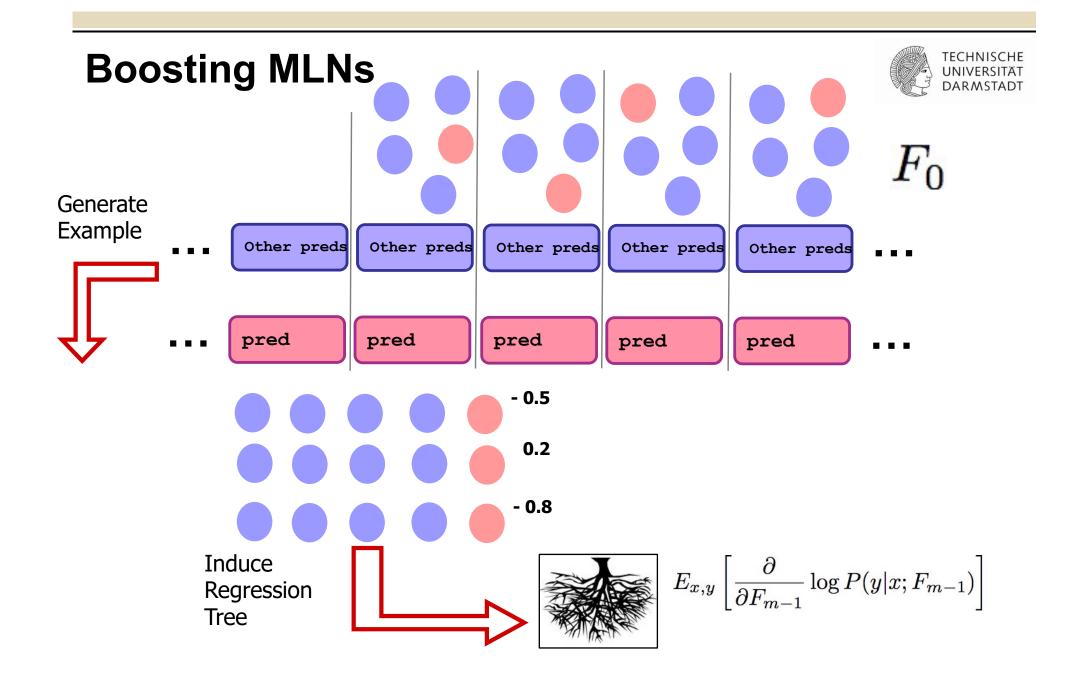
TECHNISCHE UNIVERSITÄT DARMSTADT

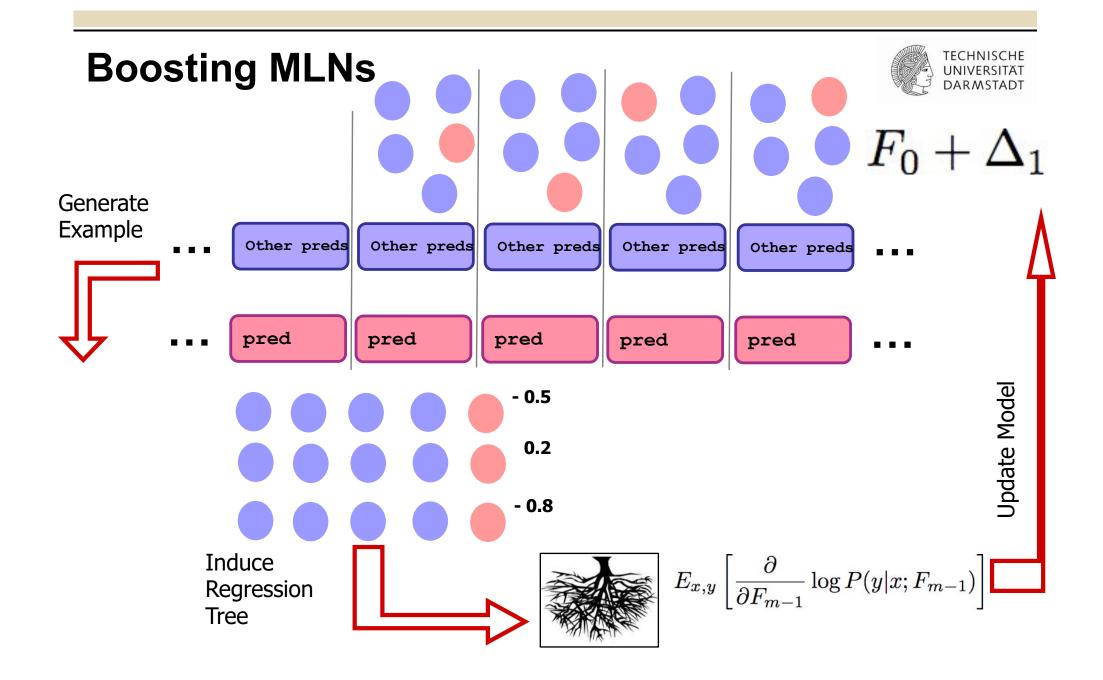


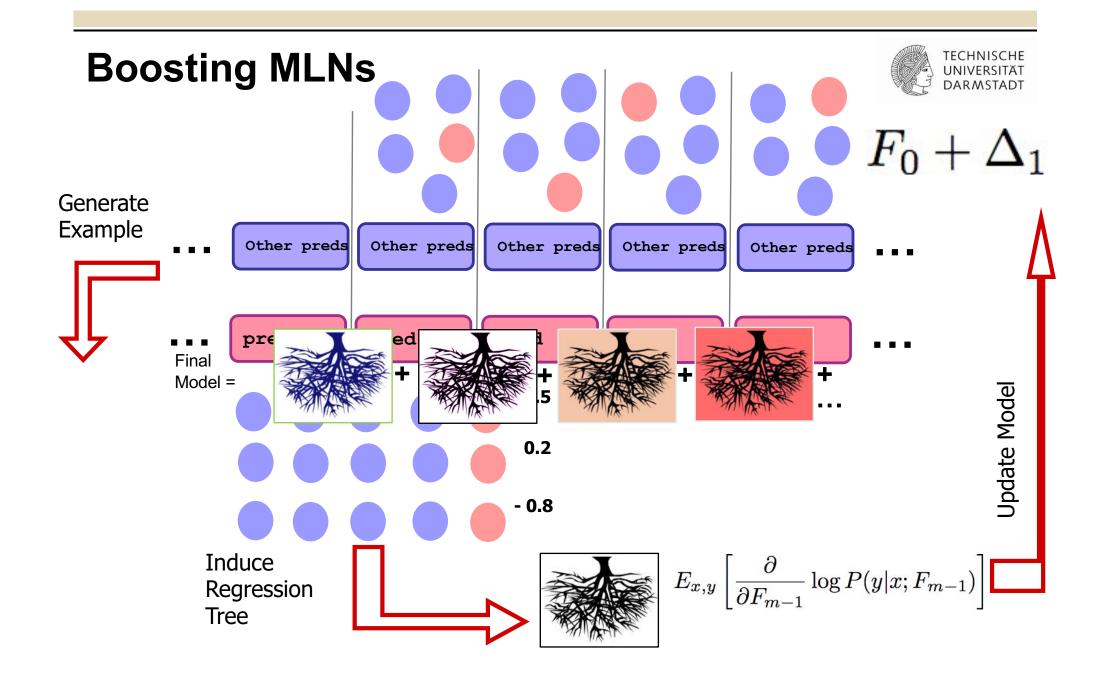


$$log P(y_i | \mathbf{x_i}) = \psi(y_i; \mathbf{x_i}) - log \sum_{y'} e^{\psi(y'; \mathbf{x_i})}$$
$$\frac{\partial log P(y_i | \mathbf{x_i})}{\partial \psi(y_i = 1 | \mathbf{x_i})} = I(y_i = 1; x_i) - \frac{e^{\psi(y_i = 1; x_i)}}{\sum_{y'} e^{\psi(y'; x_i)}}$$









And recall that this applies to mathematical programs, too!

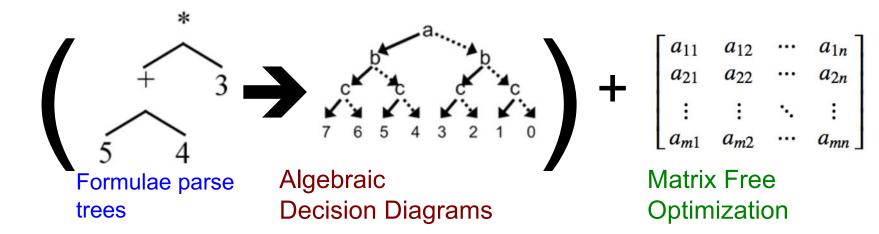
Write down SVM in "paper form." The machine compiles it into solver form.

```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
                           reloop
 Embedded within
                                                                              ()
 Python s.t. loops and
 rules can be used
 RELOOP: A Toolkit for Relational Convex Optimization
                                                                                margin
                                          Support Vector Machines
                                Cortes, Vapnik MLJ 20(3):273-297, 1995
```

X₁

Maximum

New field: Symbolic-numerical Al



Problem Statistics			Symbolic IPM		Ground IPM	
name	#vars	#constr	nnz(A)	IADDI	time[s]	time[s]
factory	131.072	688.128	4.000.000	1819	6899	516
factory0	524.288	2.752.510	15.510.000	1895	6544	7920
factory1	2.097.150	11.000.000	59.549.700	2406	34749	159730
factory2	4.194.300	22.020.100	119.099.000	2504	36248	> 48hrs.
					>4.8x faster	

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The objects must be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a number of tools which are possibly available. Various painting and connection methods are represented, each having an effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting factor of 0. 9 was used used

What have we learnt in Part II?

- Main insight for parameter estimation: parameter tighting
- Vanilla relational learning approach does a greedy search by adding/deleting literals/clauses using some (probabilistic) scoring function
- Learning many weak rules of how to change a model can be much faster
- Covers the whole AI spectrum

Conclusions: This "Deep AI " excites industry:

RelationalAI, LogicBlox, Apple, and Uber are investing hundreds of millions of US dollars

Get Siri-ous.

No more evasive answers. No more coy innuendos. When you get romantic with Siri Pro, the sparks really fly.

OPTIMIZATION

And it appears in industrial strength solvers such as CPLEX and GUROBI

And there is a popular science books about it.

In 2016 <u>Bill Gates</u> recommended the book, alongside <u>Nick</u> <u>Bostrom's</u> <u>Superintelligence</u>, as one of two books everyone should read to understand AI.

