

**Kristian** 

### Everyone should be able to turn data into insights, whether ML expert or not

## Others and I have a dream

# This poses many deep and fascinating questions

How can we make ML and AI more tractable?

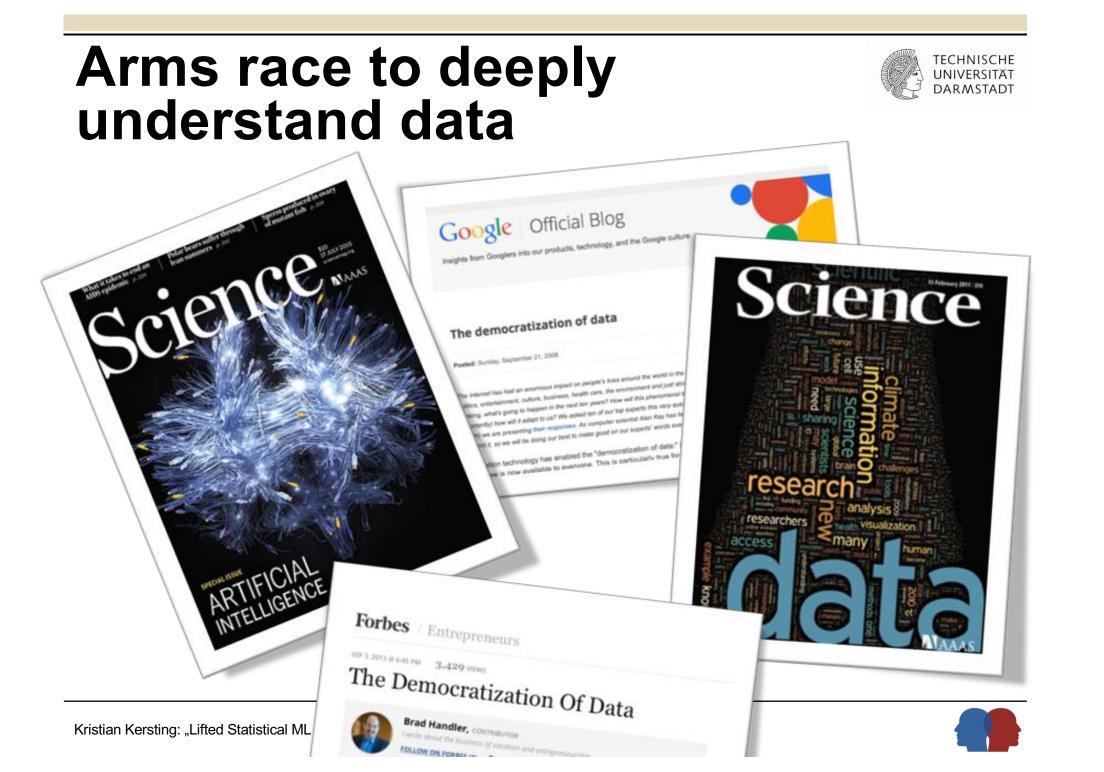
How can computers reason about and learn with complex data and knowledge?

How can computers decide autonomously which representation and algorithms are best for the data/problem?

How can computers understand data with minimal expert input?

### Today is the golden era of data

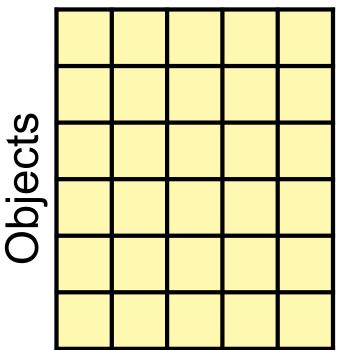




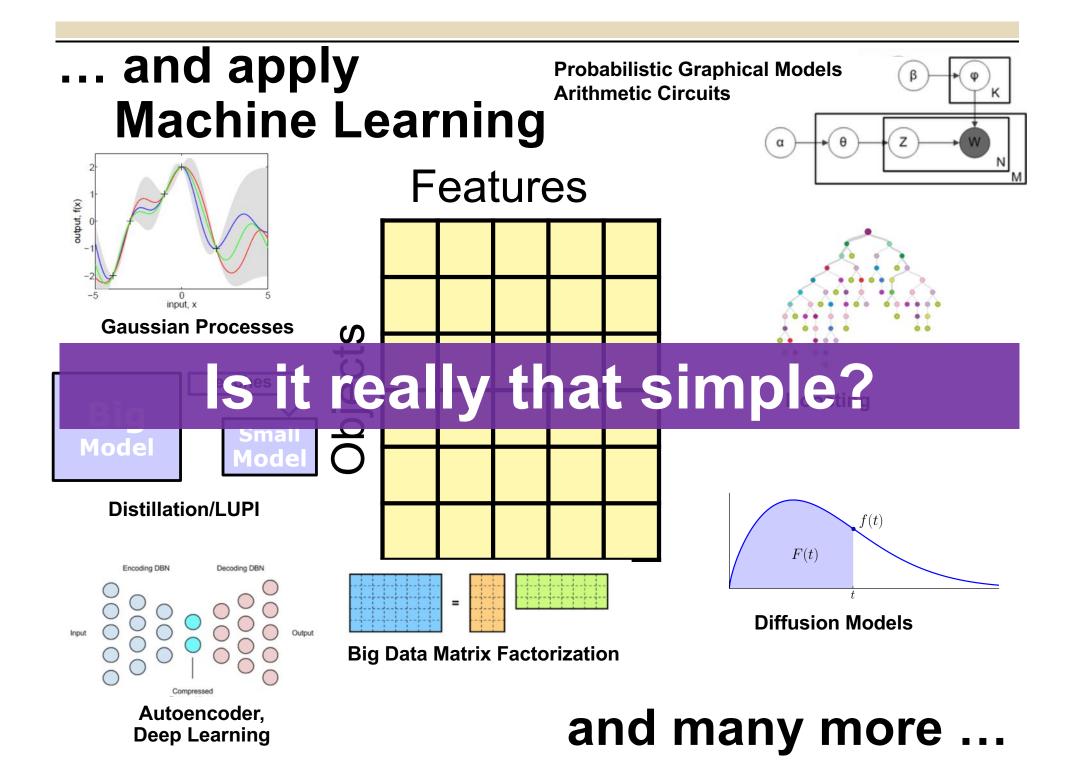


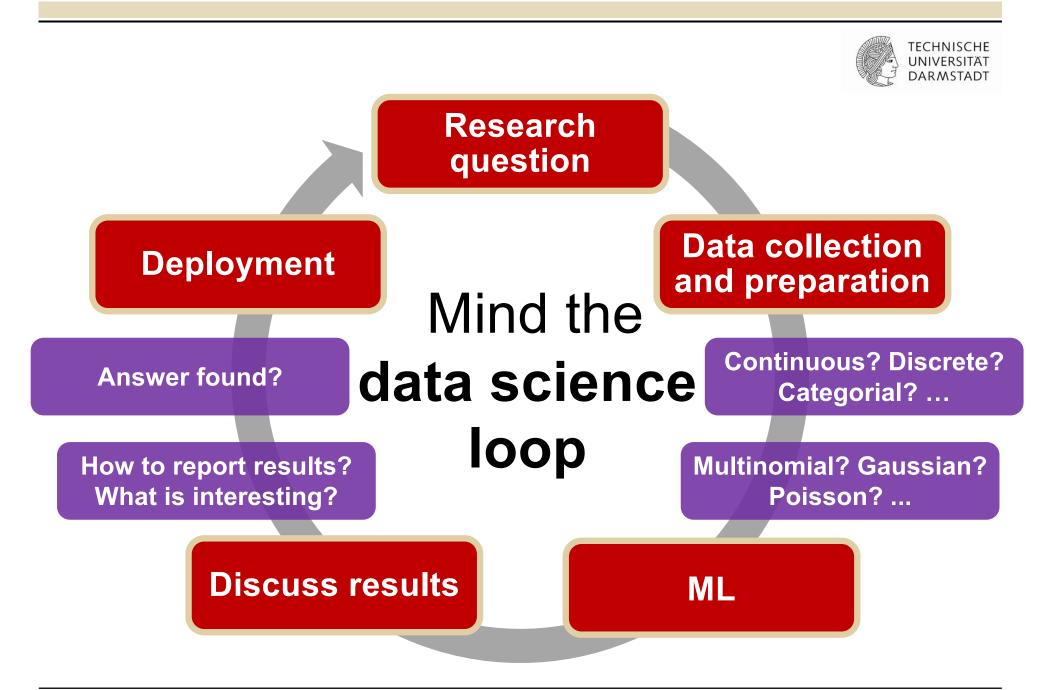
### Bottom line: Take your data spreadsheet ...

Features











### **Complex data networks abound**

[Lu, Krishna, Bernstein, Fei-Fei "Visual Relationship Detection" CVPR 2016]

**VISUAL**GENOME About

Download Data Analysis

Explore Paper

Visual Genome is a dataset, knowledge base, an ongoing connect structured image co language.

> Explore our data: throwing frisbee, helping, angry

orc



Examples not stored in a single table but in a large graph with attributes!

Read our paper.



# We have to democratize AI, Machine Learning, and Data Science

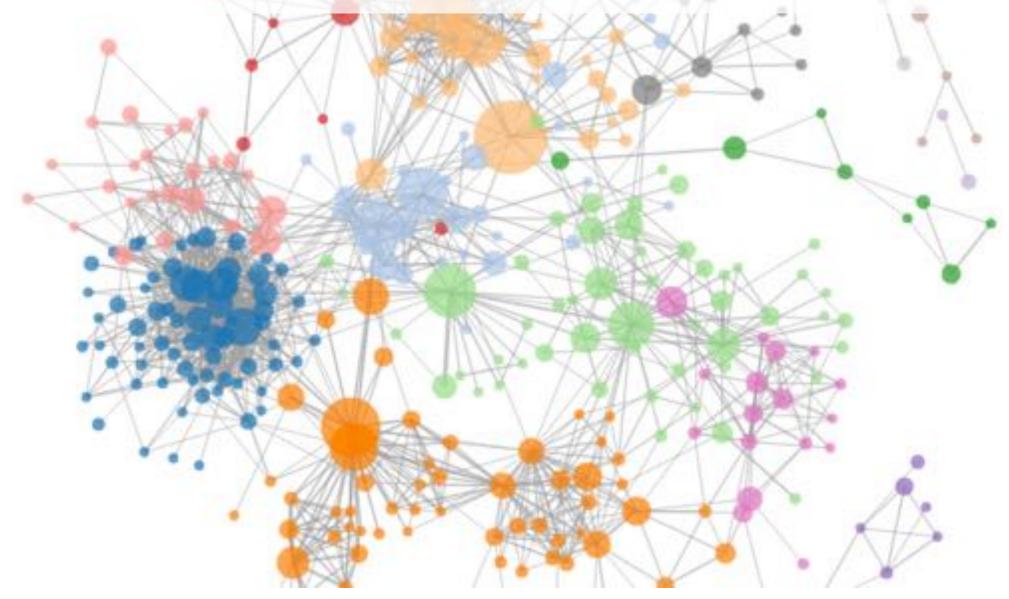
We have to work on **Systems AI**, so that we know how to rapidly combine, deploy, and maintain algorithms

### So yes, today is the golden era of data ...

... for the best-trained, best-funded Machine Learning and Artificial Intelligence teams



## Let's say we want to classify publications into scientific disciplines

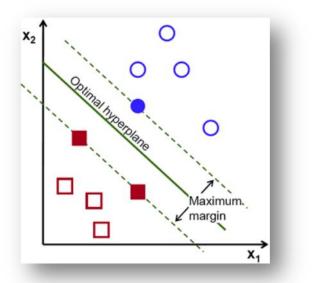




$$\min_{\mathbf{w},b,\boldsymbol{\xi}} \ \mathcal{P}(\mathbf{w},b,\boldsymbol{\xi}) = \frac{1}{2}\mathbf{w}^2 + C\sum_{i=1}^n \xi_i$$
subject to
$$\begin{cases} \forall i \quad y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) \ge 1 - \xi_i \\ \forall i \quad \xi_i \ge 0 \end{cases}$$

### Mathematics is not a high-level programming language!

Support Vector Machines Cortes, Vapnik MLJ 20(3):273-297, 1995





### **Machine Learning Programming**



### Write down SVM in "paper form." The machine compiles it into solver form.

```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
                           reloop
 Embedded within
 Python s.t. loops and
 rules can be used
 RELOOP: A Toolkit for Relational Convex Optimization
                                                                                 Maximum
                                                                                margin
                                          Support Vector Machines
                                Cortes, Vapnik MLJ 20(3):273-297, 1995
```



X<sub>1</sub>

### But wait, publications are citing each other. OMG, I have to use graph kernels!

## **REALLY?**

### No, just add two lines of code!



Write down SVM in "paper form." The machine compiles it into solver form.

```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
#TRANSDUCTIVE PART
#cited instances should have the same labels.
subject to forall {I1, I2 in linked(I1, I2)}: labeled(I1) * predict(I2) >= 1 - slack(I1, I2)
subject to forall {I1, I2 in linked(I1, I2)}: coslack(I1, I2) >= 0; #coslacks are positive
```

Citing papers share topics

# No kernel, the structure is expressed within the constraints!



## Take-away message



To move beyond deep learning, ML, AI and Computational Cognitive Science need a crossover with data and programming abstractions as well as general reasoning



- High-level languages increase the number of people who can successfully build ML/AI applications that involve learning and reasoning
- To deal with the computational complexity, we need ways to automatically reduce the solver costs



## Roadmap of this tutorial



### Two parts

- 1. Lifted Probabilistic Inference and Tractable Probabilistic Models
- 2. Statistical Relational Learning and Probabilistic Programming

- High-level languages increase the number of people who can successfully build ML/AI applications that involve learning and reasoning
- To deal with the computational complexity, we need ways to automatically reduce the solver costs



### Lifted Statistical Machine Learning

Computational modeling of complex AI systems that learn and think

### Part I: Tractable Probabilistic Models

Thanks to Babak Ahmadi, Vincent Conitzer, Rina Dechter, Luc De Raedt, Pedro Domingos, Peter Flach, Dieter Fensel, Florian Ficher, Vibhav Gogate, Carlos Guestrin, Daphen Koller, Nir Friedman, Martin Mladenov, Ray Mooney, Sriraam Natarajan, David Poole, Fabrizio Riguzzi, Dan Suciu, Guy van den Broeck, and many others for making their slides publically available

Symbolic Complexity **Structure** Logic Abstraction Resolution Generalization Modules

#### Numeric Noise **Probabilities** Values Graphical Expectation







TECHNISCHE UNIVERSITÄT DARMSTADT

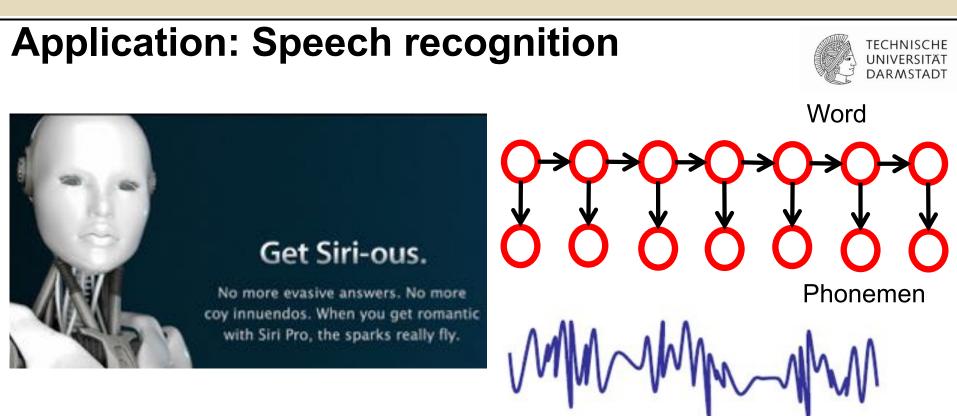


Judea Pearl received 2012 the <u>ACM Turing</u> <u>Award 2012</u> for his work on graphical models

### **Roadmap of Part I**

# Basics of graphical models Exploiting symmetries for inference Deep probabilistic models

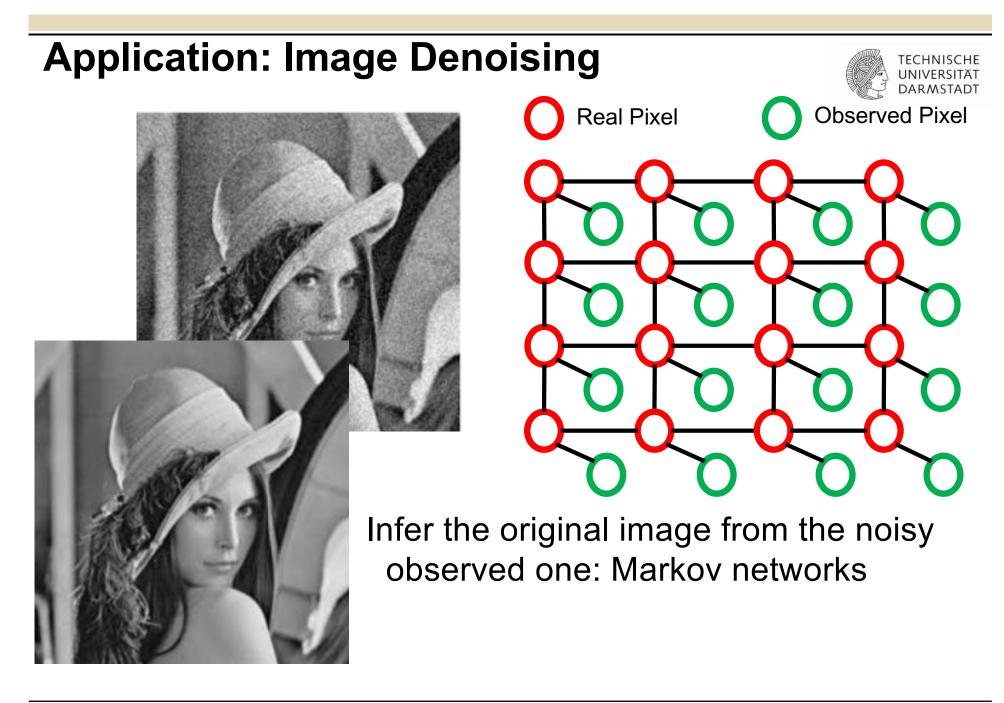




"He ate the cookies on the couch"

### Infer the words from spoken language: Hidden Markov Model







### **Graphical models are omnipresent**



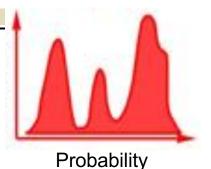
Information retrivel, search, collaborative filtering, gene expression analysis, natural language processing, bioinformatics, and many,

> many, many, many many more!

OK, so what are probabilities and graphical models?



### In a Nutshell, Graphical Models are ...



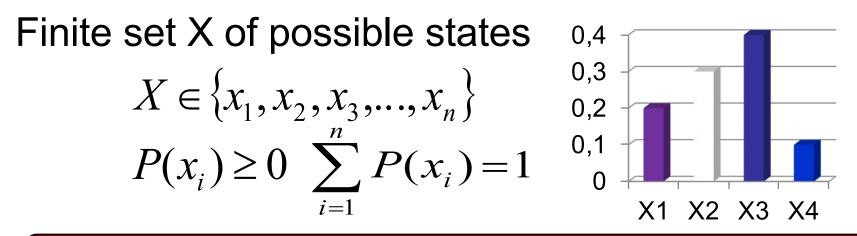
... a graphical notation for (conditional) independency assumptions and therefore a (hopefully) compact specification of probability distributions

Nodes= Random Variables (RVS) Edges= Dependencies among RVs Sayesian<br/>NetworksMarkov<br/>NetworksFactor<br/>Graphs



### **Discrete Random Variables**





OK, but answering the question requires the joint distribution

What is the probability that smoking causes cancer?

| < | Smoking | ) |
|---|---------|---|
|   | Cancer  |   |

| no    | few     | many    |
|-------|---------|---------|
| 0.800 | 0.150   | 0.050   |
|       |         |         |
|       |         |         |
| no    | benigne | maligne |

### **Joint Distribution**



### Probability that X=x and Y=y are "true"

$$P(x, y) \equiv P(X = x \land Y = y)$$

Concor

|        | Cancer |       |         |         |  |
|--------|--------|-------|---------|---------|--|
|        |        | no    | benigne | maligne |  |
| b      | no     | 0.768 | 0.024   | 0.008   |  |
| moking | few    | 0.132 | 0.012   | 0.006   |  |
| Sm     | many   | 0.035 | 0.010   | 0.005   |  |

## The joint distribution allows us to answer any question! But how?

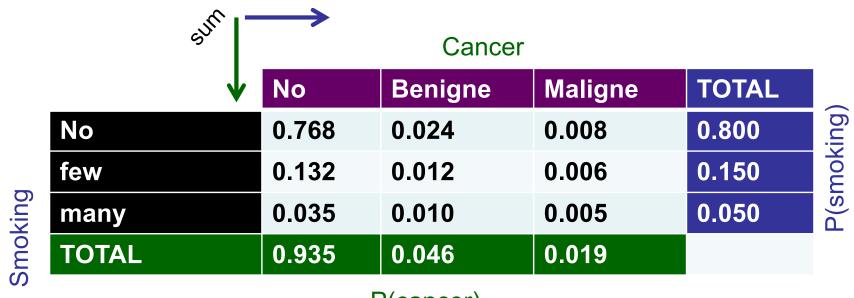


### Make use of basic probability theory



Marginalization

$$P(Y) = \sum_{i=1}^{n} P(Y, x_i)$$



P(cancer)

Product rule & conditional probability

$$P(X,Y) = P(X | Y)P(Y) = P(Y | X)P(X)$$

Probability that X=x if we have observed Y=y (P(y)>0)

### Probably the most important rule: Bayes



$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

cancer

|         |       | no    | benigne | maligne |  |
|---------|-------|-------|---------|---------|--|
| smoking | no    | 0.768 | 0.024   | 0.008   |  |
|         | few   | 0.132 | 0.012   | 0.006   |  |
|         | many  | 0.035 | 0.010   | 0.005   |  |
|         | TOTAL | 0.935 | 0.046   | 0.019   |  |
|         |       |       |         |         |  |

### P(Krebs)

Since we know already P(R,K) und auch P(K), just divide them.



### Probably the most important rule: Bayes



$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

#### cancer

|         |           | no          | benigne     | maligne      |  |
|---------|-----------|-------------|-------------|--------------|--|
| smoking | no        | 0.768/0.935 | 0.024/ 0.46 | 0.008/ 0.019 |  |
|         | few       | 0.132/0.935 | 0.012/ 0.46 | 0.006/ 0.019 |  |
|         | many      | 0.035/0.935 | 0.010/ 0.46 | 0.005/ 0.019 |  |
|         | TOTAL     | 0.935       | 0.046       | 0.019        |  |
|         | P(cancer) |             |             |              |  |



### Probably the most important rule: Bayes



$$P(R,K) = P(R \mid K)P(K) = P(K \mid R)P(R)$$

$$P(R \mid K) = \frac{P(K \mid R)P(R)}{P(K)} = \frac{P(K, R)}{P(K)}$$

| oon  | oor- |   |   | 1 |
|------|------|---|---|---|
| Call | cer= | ÷ | ÷ |   |

|           |      | no    | benigne | maligne |
|-----------|------|-------|---------|---------|
| king      | no   | 0.821 | 0.522   | 0.421   |
| o(smoking | few  | 0.141 | 0.261   | 0.316   |
| P(sı      | many | 0.037 | 0.217   | 0.263   |

As long as all entries are >0, everything can be computed! Mission completed?



Joint distribution is enumerating everything

- •Worst-case run time: O(2<sup>n</sup>)
  - n = # of RVs
- Space is O(2<sup>n</sup>) too
  - Size of the table of the joint distribution

Main idea: make use of independencies to compress the representation



### Indpendency



### (Current) age and the gender of a person are independent $P(G | A) = P(G) \cdot P(G)$



$$P(G, A) = P(G) \cdot P(A)$$
$$P(A | G) = P(A)$$
$$P(G | A) = P(G)$$

You would not give me money for information on the gender to know the age of a person!

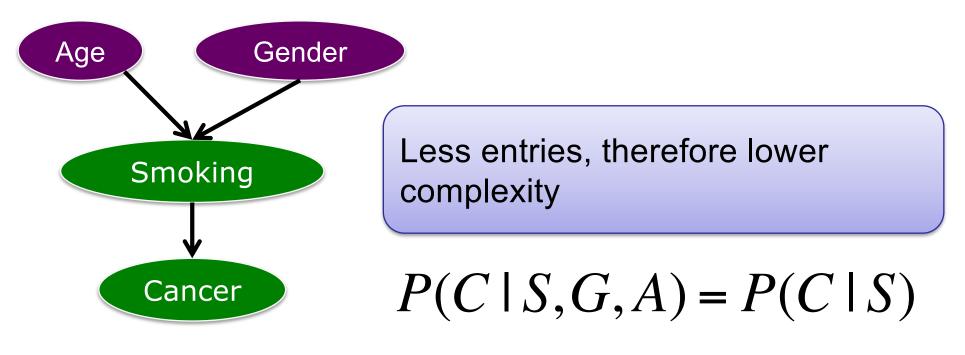


### **Conditional Independence**



Cance is independent of age and gender, if the person smokes.

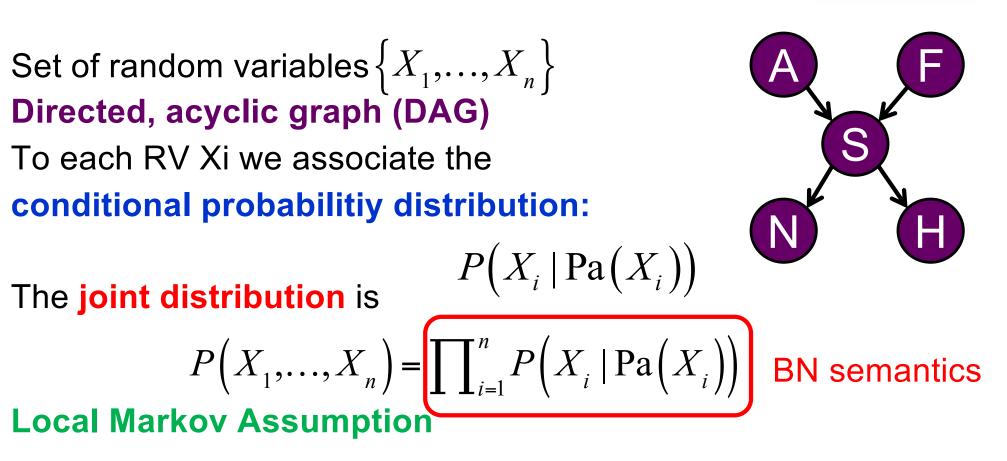
If you have not observed anything,age and gender are independent.





### Bayesian Networks [Pearl 1989]





Each RV X is independent of ist "non-descendant" given ist parents (Xi  $\perp$  nonDescendants| Pa<sub>Xi</sub>)



| Example                          |         |             |      |      |                | TECHNIS<br>UNIVERS<br>DARMST | TÄT       |   |
|----------------------------------|---------|-------------|------|------|----------------|------------------------------|-----------|---|
|                                  |         |             |      | But  | how d          | o we do                      | inference | ? |
| $R \in \{no, few, many\}$ Smokin |         |             |      | g    |                | → Ca                         | ncer      |   |
|                                  | P(S=n)  |             | 0.80 |      |                |                              |           |   |
|                                  | P(S=f)  |             | 0.15 |      | C              |                              | ,         |   |
|                                  | P( S=m) | ( S=m) 0.05 |      | K    | $f \in \{no\}$ | ,benigne                     | ,maligne} |   |
|                                  |         | Smokir      |      | g=   | n              | f                            | · m       |   |
| P(C:                             |         | P(C=n)      | )    |      | 0.96           | 0.88                         | 0.60      |   |
| P(C=b                            |         | )           |      | 0.03 | 0.08           | 0.25                         |           |   |
|                                  | P( C=m) |             |      | 0.01 | 0.04           | 0.15                         |           |   |



### What is Inference?

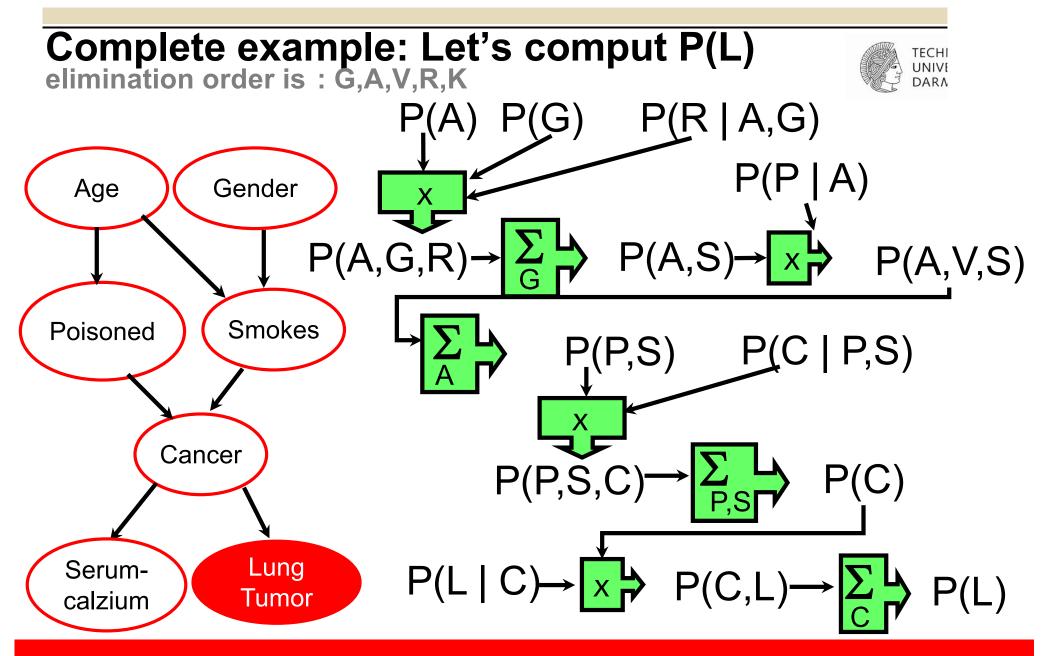


Query:  $P(X \mid e)$ 

**Definiton of conditional probability**  $P(X \mid e) = \frac{P(X, e)}{P(e)}$ 

Up to normalization  $P(X \mid e) \propto P(X, e)$ Hence, this rewrites to

$$P(\mathbf{Y}) = \underbrace{\sum_{X_i \notin \mathbf{Y}} \prod_{i=1}^n P(X_i \mid \text{Pa}(X_i))}_{\text{BN semantics}}$$
  
BN semantics  
Marginalization  
**Main observation:**  $\Sigma$  and  $\prod$  commute  
 $\sum_{a}(P_1 \mid X \mid P_2) = (\sum_{a} P_1) \mid X \mid P_2 \text{ if A is not in } P_2$ 



Exponentiall in the size of the largest (induced) factor (table) also called treewidth: 2<sup>3</sup> vs 2<sup>7</sup>

# As an algorithm, this is called: Variable elimination



Given a BN and a query P(X|e) / P(X,e)

Instantiate evidence e

Choose an elimination order over the variables, e.g.,  $X_1$ , ...,  $X_n$ Initial *factors* { $f_1$ ,..., $f_n$ }:  $f_i = P(X_i | Pa_{Xi})$  (CPT for  $X_i$ )

For i = 1 to n, if  $X_i \notin \{X, E\}$ 

- Collect factors  $f_1, \ldots, f_k$  that include  $X_i$
- Generate a new factor by eliminating X<sub>i</sub> from these factors

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

Variable X<sub>i</sub> has been eliminated! Add g to the set of factors

Normalize P(X, e) to obtain P(X|e)



Uncertainty is omnipresent

Uncertainty can be captured using probability distributions

Graphical models are compact encodings of probability distributions

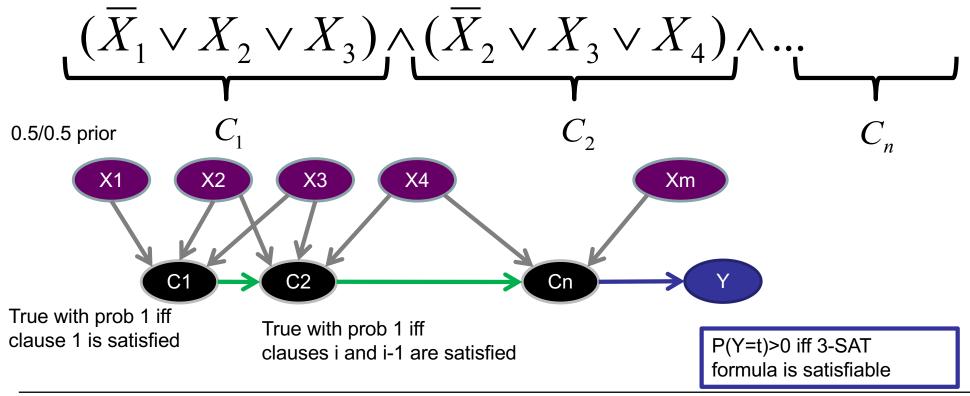
They lead to "efficient" algorithms for inference such as Variablen-Elimination



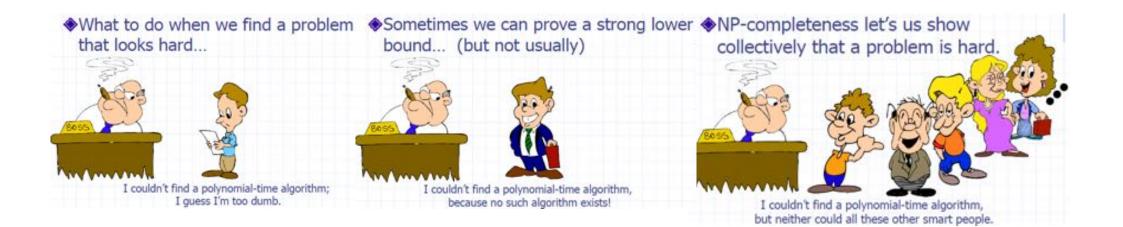
Mission Completed? No ...

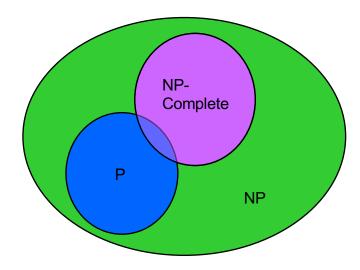


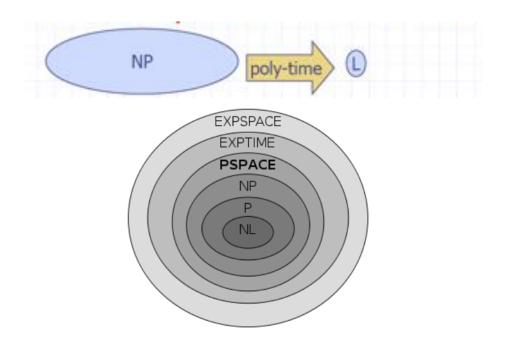
**Theorem**: Inference (even approximate) in Bayesian networks is NP-hard (#P; via reduction to 3-SAT)













# What have we learnt about Bayesian networks?



- Bayesian networks (BNs) encode joint distributions
- They are DAGs

(nodes = RVs, edges = dependencies)

- Inference is NP-hard
- Variable Elimination is one of the most basic inference approaches; there are many other inference approaches
- We have skipped learning BNs





### **Roadmap of the course**

# Basics of graphical models Exploiting symmetries for inference Sum-product networks



Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

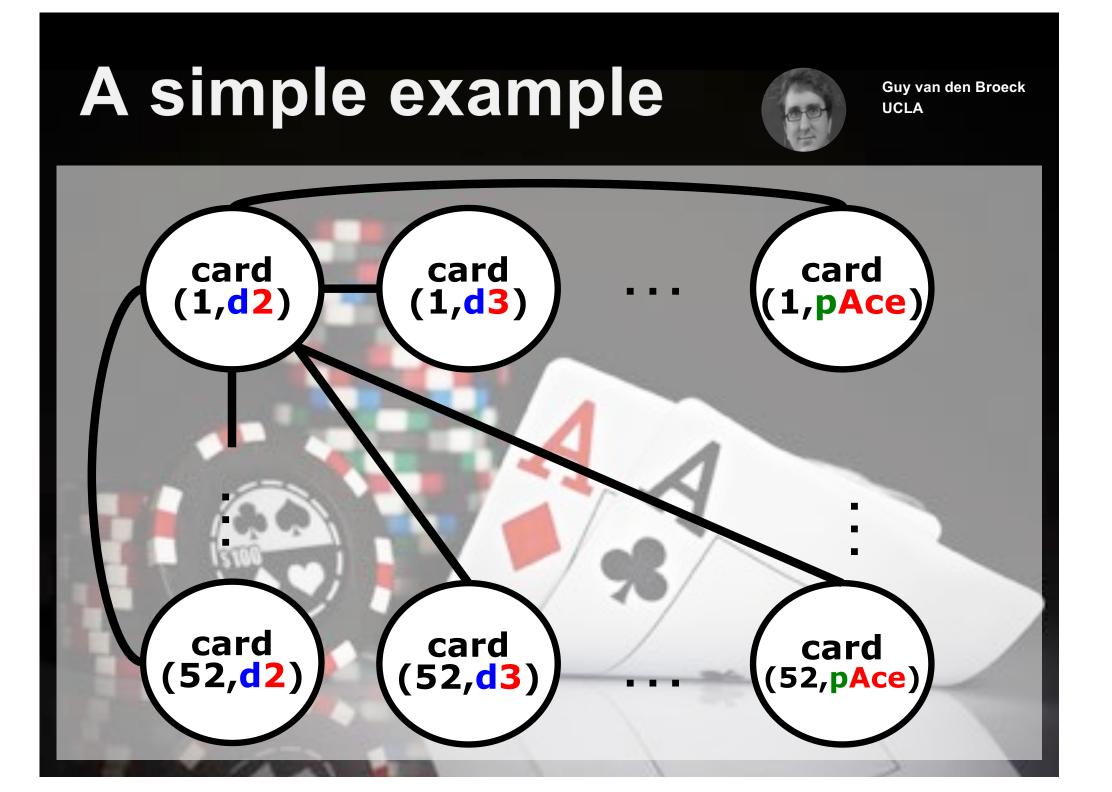
# A simple example



Guy van den Broeck UCLA

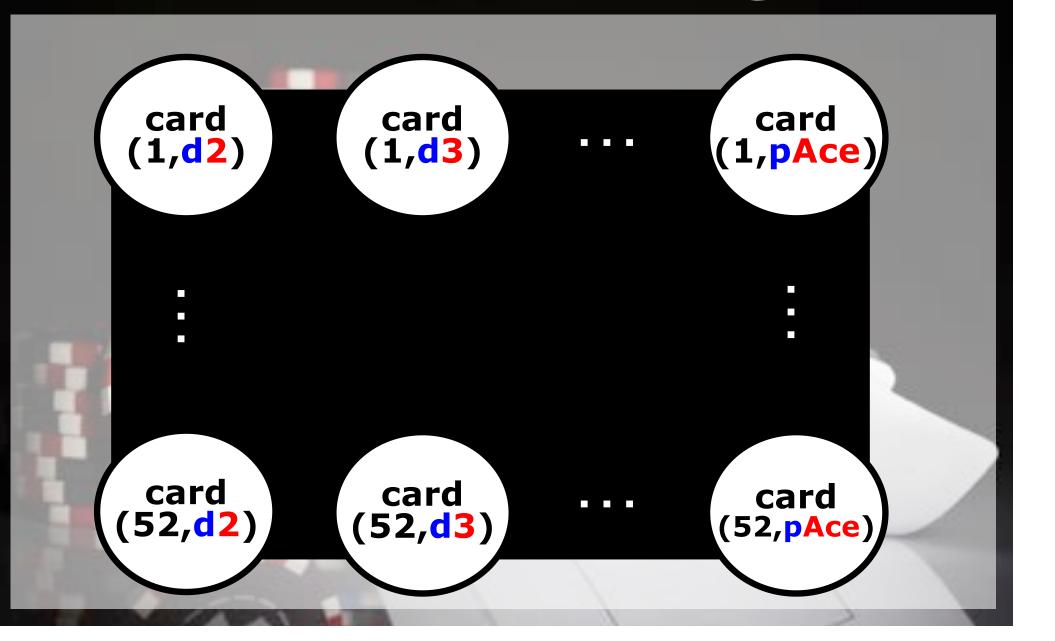
What is the probability that the first card of a randomly shuffled deck with 52 cards is an Ace?

How would a machine solve this? One option is to treat this as an inference problem within in a graphical model





Guy van den Broeck UCLA



# We do not want to write down all the rules!

#### **Faster modelling**

Let's use programming abstractions such as e.g.

w1: $\forall$ p,x,y: card(P,X),card(P,Y) $\Rightarrow$ x=y w2: $\forall$ c,x,y: card(X,C),card(Y,C) $\Rightarrow$ x=y

# We do not want to write down all the rules!

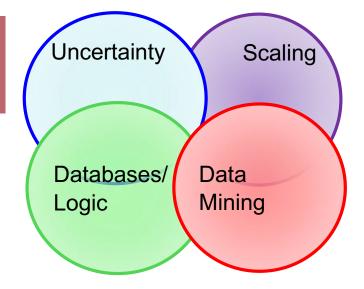


Statistical Relational Artificial Intelligence Logic, Probability, and Computation Luc de Rush Kristian Konting Steasen Naturajan David Poole

De Raedt, Kersting, Natarajan, Poole, Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

# Crossover of ML/AI with data & programming abstractions

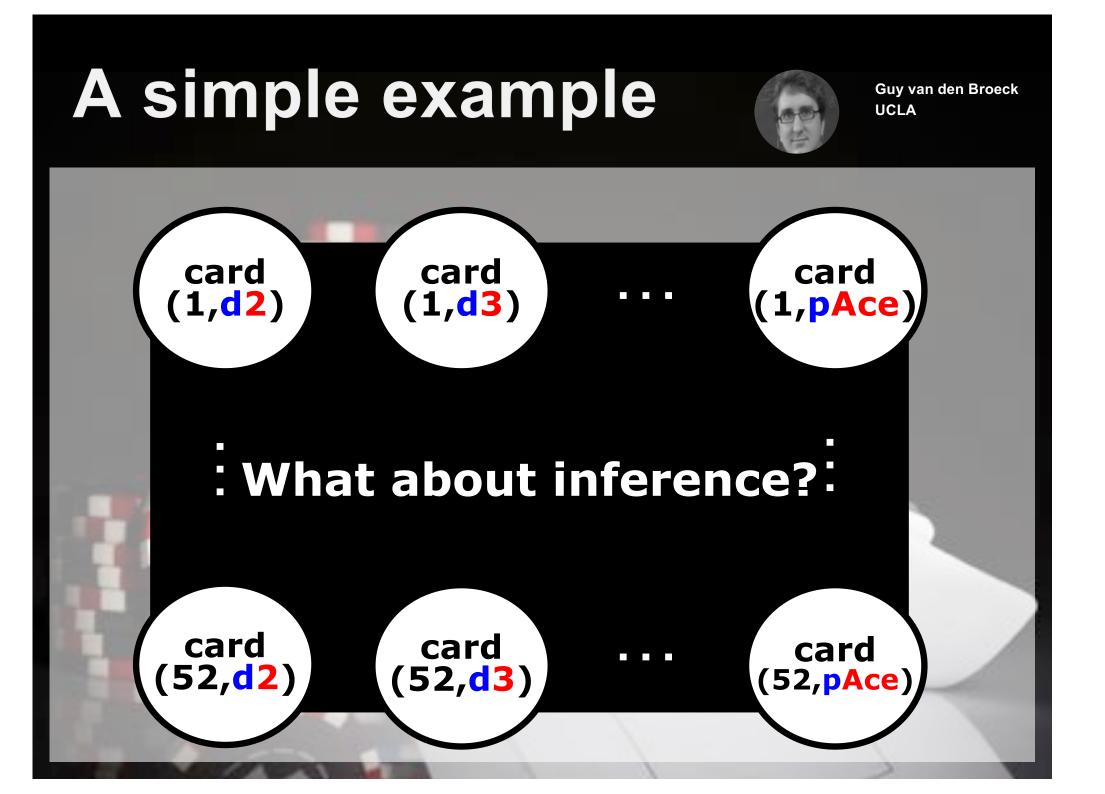
make the ML/AI expert more effective increases the number of people who can successfully build ML/AI applications

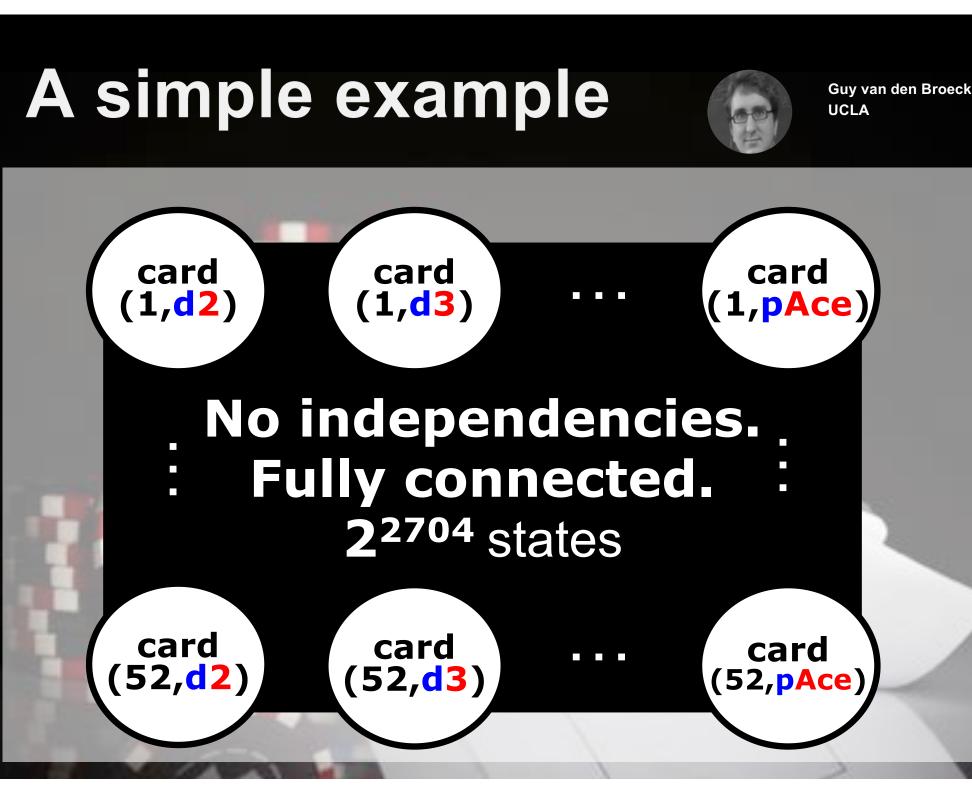




### Not convinced? LogicBlox, RelationalAl, Apple and Uber invest(ed) hundreds of millions of dollars into this Al/ML Systems view

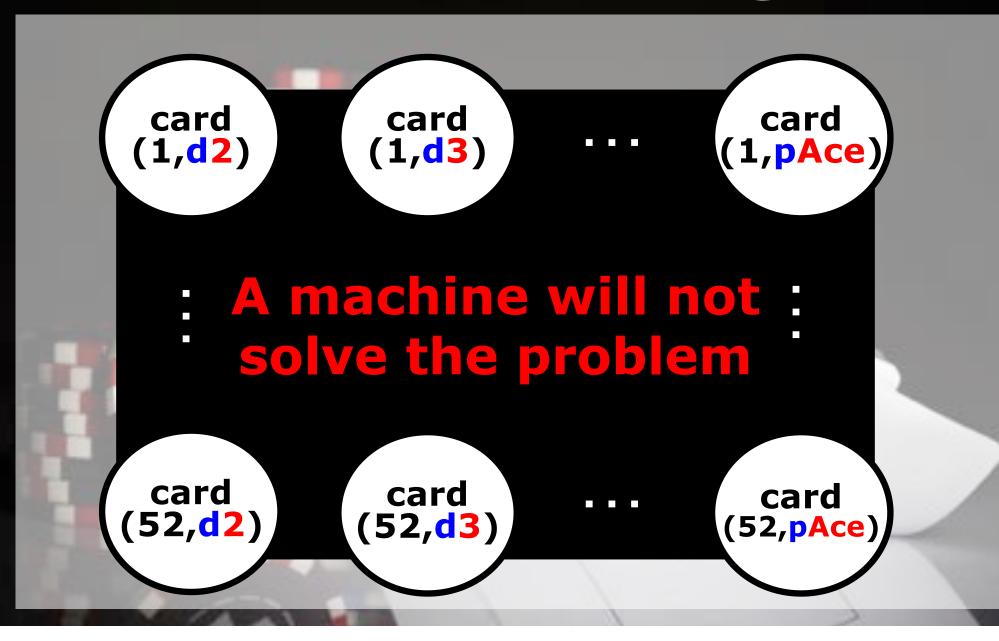






# A simple example

Guy van den Broeck UCLA



# What are we missing?

# Positions and cards are exchangable but the machine is not aware of these symmetries

# **Faster modelling**

Let's use programming abstractions together with symmetry- and languageaware solvers

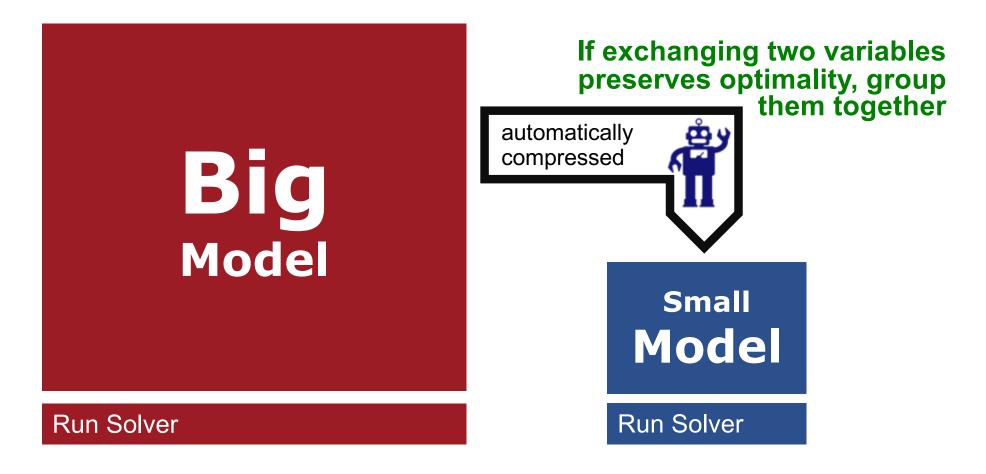
**Faster solvers** 

Positions and cards are exchangable but the machine is not aware of these symmetries

#### Like "-O" flags known from compilers: Let the AI machine figure out computational symmetries



[Mladenov, Ahmadi, Kersting AISTATS '12, Grohe, Kersting, Mladenov, Selman ESA '14, Kersting, Mladenov, Tokmatov AIJ '17]

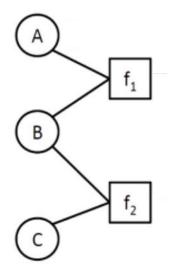




# **Compression: Coloring the graph**



[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting, Mladenov, Tokmatov AIJ 17]



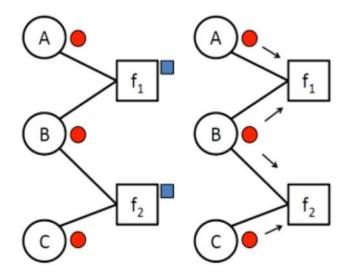
# Color nodes initially with the same color, say red

**Color factors distinctively according to their equivalences.** For instance, assuming f<sub>1</sub> and f<sub>2</sub> to be identical and B appears at the second position within both, say **blue** 





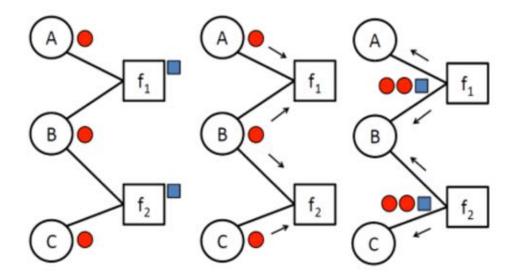
[Kersting, Ahmadi, Natarajan UAI'09; Ahmadi, Kersting, Mladenov, Natarajan MLJ'13, Mladenov, Ahmadi, Kersting AISTATS 12, Grohe, Kersting, Mladenov, Selman ESA 14, Kersting, Mladenov, Tokmatov AIJ 17]



1. Each factor collects the colors of its neighboring nodes



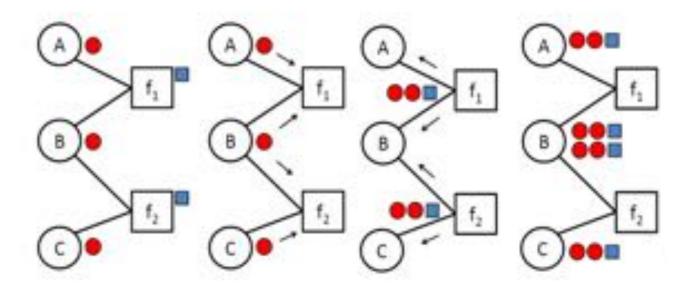




- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color



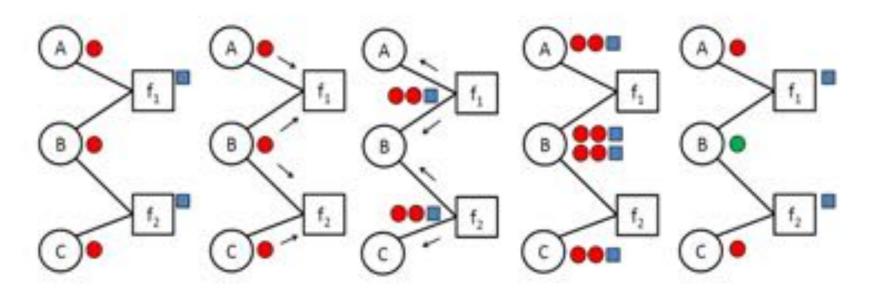




- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors



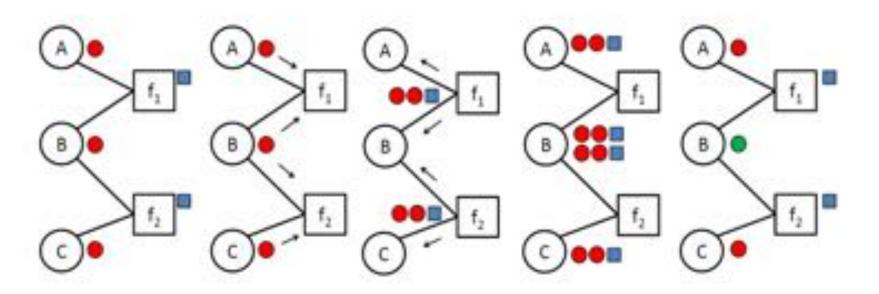




- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors
- 4. Nodes are recolored according to the collected signatures







- 1. Each factor collects the colors of its neighboring nodes
- 2. Each factor "signs" its color signature with its own color
- 3. Each node collects the signatures of its neighboring factors
- 4. Nodes are recolored according to the collected signatures
- 5. If no new color is created stop, otherwise go back to 1

# Why does this work?



# Approximate probabilistic inference closely connected to LPs

 $\widehat{\mathbf{x}} \in \arg \max_{\mathbf{x} \in \mathcal{X}^N} \left\{ \sum_{s \in V} \theta_s(x_s) + \sum_{(s,t) \in E} \theta_{st}(x_s, x_t) \right\}$ 



Symmetrized Subspace

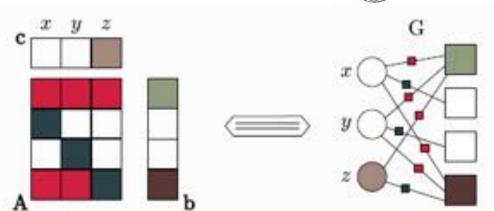
**Relaxed Polytope** 

Marginal Polytope

# Why does this work?

od No Sel Od Sel Od Sel Od [Mladenov, Ahmadi, Kersting AISTATS '12, Grohe, Kersting, Mladenov, Selman ESA '14, Kersting, Mladenov, Tokmatov AIJ '15]

Compute Equitable Partition (EP) of the LP using WL



$$\mathcal{P} = \{P_1, \dots, P_p; Q_1, \dots, Q_q\}$$

Partition ofPartition ofLP variablesLP constraints

Intuitively, we group together variables resp. constraints that interact in the very same way in the LP.



TECHNISCHE

DARMSTAD

# **Fractional Automorphisms of LPs**



The EP induces a fractional automorphism of the coefficient matrix **A** 

$$\mathbf{X}_{Q}\mathbf{A} = \mathbf{A}\mathbf{X}_{P}$$

where  $X_Q$  and  $X_p$  are doubly-stochastic matrixes (relaxed form of automorphism)

$$(\mathbf{X}_{P})_{ij} = \begin{cases} 1/|P| & \text{if both vertices } i, \ j \text{ are in the same } P, \\ 0 & \text{otherwise.} \end{cases}$$
$$(\mathbf{X}_{Q})_{ij} = \begin{cases} 1/|Q| & \text{if both vertices } i, \ j \text{ are in the same } Q, \\ 0 & \text{otherwise} \end{cases}$$



# Fractional Automorphisms Preserve Solutions



If **x** is feasible, then  $\mathbf{X}_{p}\mathbf{x}$  is feasible, too.

By induction, one can show that left-multiplying with a double-stochastic matrix preserves directions of inequalities; they are averagers. Hence,

 $\mathbf{A}\mathbf{x} \leq \mathbf{b} \Rightarrow \mathbf{X}_{Q}\mathbf{A}\mathbf{x} \leq \mathbf{X}_{Q}\mathbf{b} \Leftrightarrow \mathbf{A}\mathbf{X}_{P}\mathbf{x} \leq \mathbf{b}$ 



# Fractional Automorphisms Preserve Solutions



Since by construction  $\mathbf{c}^T \mathbf{X}_P = \mathbf{c}^T$  and hence  $\mathbf{c}^T (\mathbf{X}_P \mathbf{x}) = \mathbf{c}^T \mathbf{x}$ 



# What have we established so far?



Instead of considering the original LP

 $(\mathbf{A},\mathbf{b},\mathbf{c})$ 

It is sufficient to consider

$$(\mathbf{A}\mathbf{X}_{P},\mathbf{b},\mathbf{X}_{P}{}^{T}\mathbf{c})$$

i.e. we "average" parts of the polytope.

#### But why is this dimensionality reduction?



# **Dimensionality Reduction**



The doubly-stochastic matrix  $\mathbf{X}_P$  can be written

 $\mathbf{v}_{-} = \mathbf{P}\mathbf{P}^{T}$ 

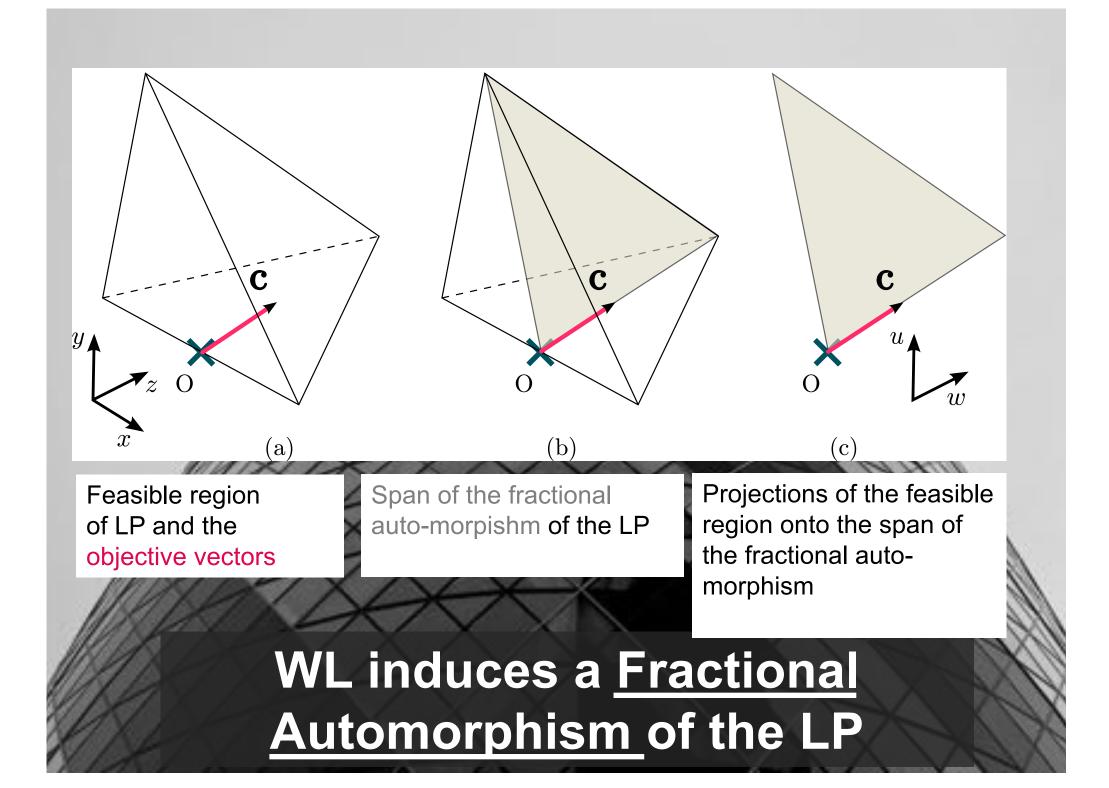
$$\mathbf{B}_{iP} = \begin{cases} \frac{1}{\sqrt{|P|}} & \text{if vertex } i \text{ belongs to part } P, \\ 0 & \text{otherwise.} \end{cases}$$

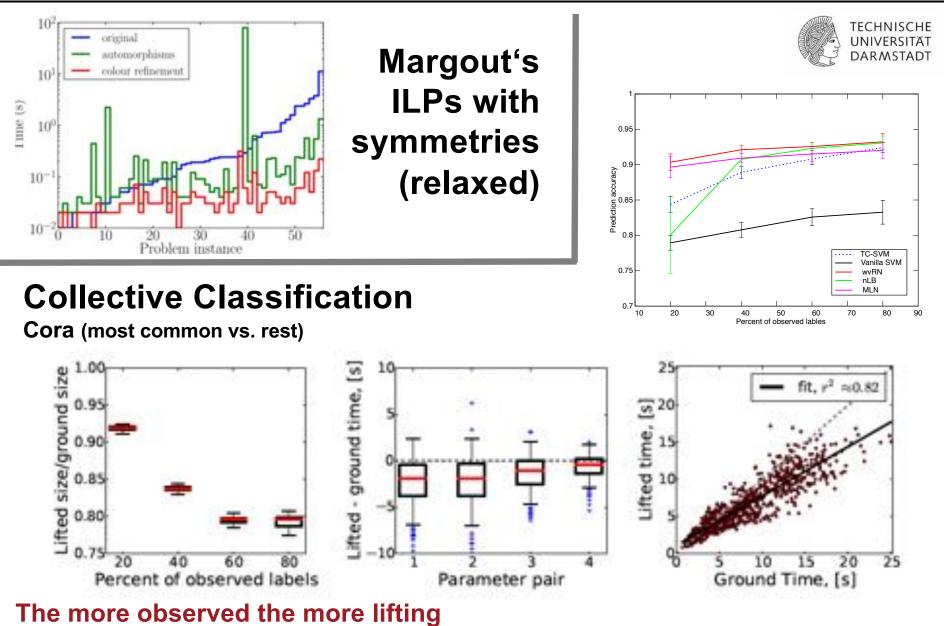
Since the column space of B is equivalent to the span of  $\mathbf{X}_P$ , it is actually sufficient to consider only  $(\mathbf{AB}_P, \mathbf{b}, \mathbf{B}_P^T \mathbf{c})$ 

This is of reduced size, and actually we can also drop any constraint that becomes identical



as



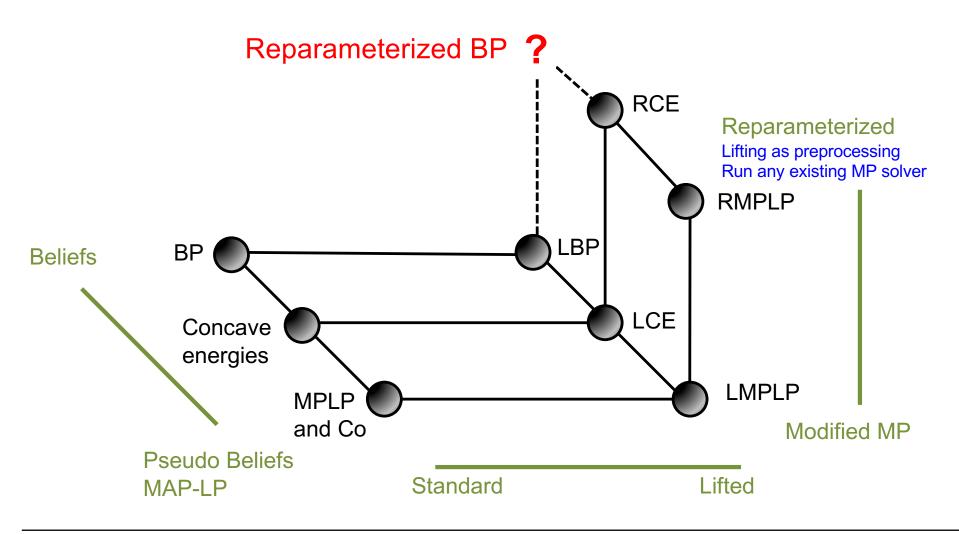


Faster end-to-end even in the light of Gurobi's fast pre-solving heuristics

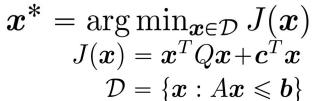
#### Lifted probabilistic \_ Inference in a smaller, inference reparameterized model

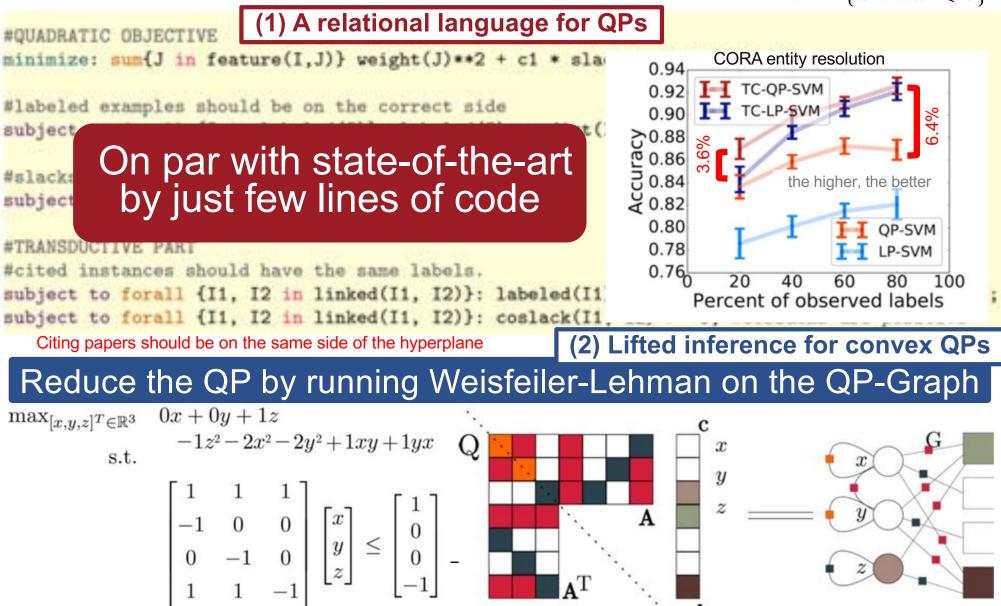
TECHNISCHE

[Mladenov, Globerson, Kersting UAI 2014; Mladnov, Kersting UAI 2015]



#### BTW, this also works for Convex Quadratic Programs





# Industrial Strength Solvers such as CPLEX and GUROBI are deploying this









Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

# What have we learnt about lifted inference?

- Learning (rich) representations is a central problem of machine learning
- (Fractional) symmetry / group theory provide a natural foundation for learning representations
- Symmetries = "unimportant" variants of data (graphs, relational structures, ...)
- "Unimportant" variants get grouped together

#### However, inference and modelling are still "hard"



## For Systems AI we have to provide a set of tools for understanding data that require minimal expert input

#### The Automatic Statistician

A system which explores an openended space of statistical models to discover a good explanation of the data, and then produces a detailed report with figures and natural-language text of lost and from Thitsenwards

sportfully with a typical lengthscale of 36.9 years. Across period sportfully with a typical lengthscale of 36.9 years. The shape of portfull in way smooth and resembles a sinusoid. This component applies months.

Tes component explains 71.5% of the residual variance; this increases the total variour 22.5% to 92.3%. The addition of this comportent reduces the cross validated M out 0.18 to 0.15.

----

# Only regression so far!







Llyod, Duvenaud, Ghahramani U. Cambridge



Grosse, Tenenbaum MIT





Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

## For Systems AI we have to provide a set of tools for understanding data that require minimal expert input

| C localhost:8888/tree                    |                      |                |
|------------------------------------------|----------------------|----------------|
| 📁 jupyter                                |                      |                |
| Files Running Clusters                   |                      | Upload New • C |
| Select items to perform actions on them. |                      |                |
| 0                                        | Notebook list empty. |                |

Instead of starting with an empty notebook ...

## For Systems AI we have to provide a set of tools for understanding data that require minimal expert input



#### the machine automatically compiles one for you!

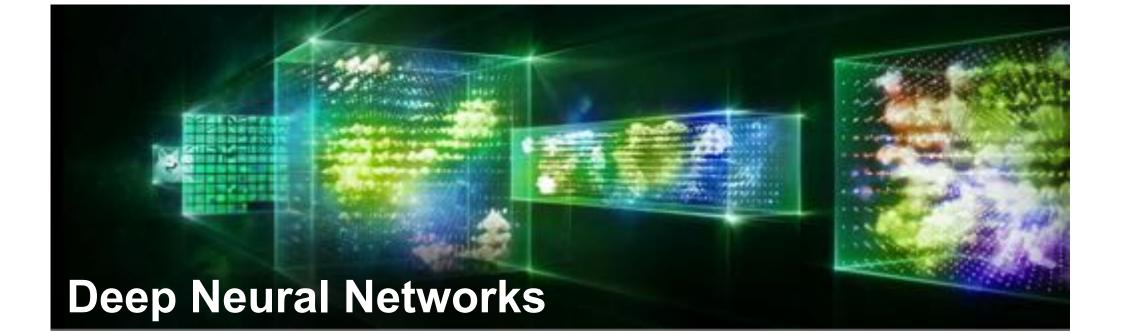
# **Deep Neural Networks**

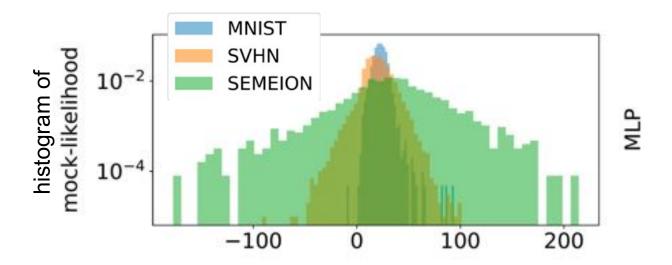
Potentially much more powerful than shallow architectures, represent computations [Bengio, 2009]

#### But ...

- Often no probabilistic semantics
- Learning requires extensive efforts







#### Deep neural networks may not be faithful probabilistic models



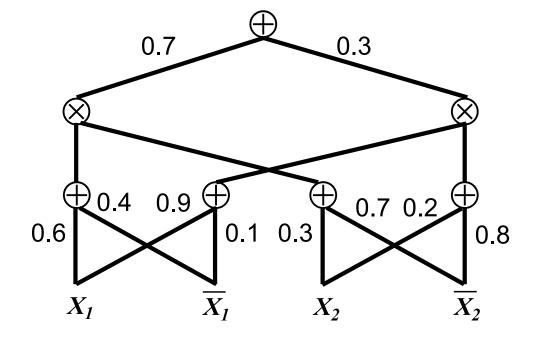


# Can we borrow ideas from deep learning for probabilistic graphical models?

Judea Pearl, UCLA Turing Award 2012

## **Deep Probabilistic Modelling** using Sum-Product Networks





**Computational graph** (kind of TensorFlow graphs) that encodes how to compute probabilities

#### Inference is Linear in Size of Network

Adnan

UCLA



# Alternative Representation:

| X <sub>1</sub> | $X_2$ | <b>P</b> (X) |
|----------------|-------|--------------|
| 1              | 1     | 0.4          |
| 1              | 0     | 0.2          |
| 0              | 1     | 0.1          |
| 0              | 0     | 0.3          |

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1] + 0.2 \cdot I[X_1=1] \cdot I[X_2=0] + 0.1 \cdot I[X_1=0] \cdot I[X_2=1] + 0.3 \cdot I[X_1=0] \cdot I[X_2=0]$$



# Alternative Representation:

| X <sub>1</sub> | $X_2$ | <b>P</b> (X) |
|----------------|-------|--------------|
| 1              | 1     | 0.4          |
| 1              | 0     | 0.2          |
| 0              | 1     | 0.1          |
| 0              | 0     | 0.3          |

$$P(X) = 0.4 \cdot I[X_1=1] \cdot I[X_2=1]$$
  
+ 0.2 \cdot I[X\_1=1] \cdot I[X\_2=0]  
+ 0.1 \cdot I[X\_1=0] \cdot I[X\_2=1]  
+ 0.3 \cdot I[X\_1=0] \cdot I[X\_2=0]



## **Shorthand for Indicators**



| <i>X</i> <sub>1</sub> | $X_2$ | <b>P</b> ( <b>X</b> ) |
|-----------------------|-------|-----------------------|
| 1                     | 1     | 0.4                   |
| 1                     | 0     | 0.2                   |
| 0                     | 1     | 0.1                   |
| 0                     | 0     | 0.3                   |

$$P(X) = 0.4 \cdot X_1 \cdot X_2$$
$$+ 0.2 \cdot X_1 \cdot \overline{X_2}$$
$$+ 0.1 \cdot \overline{X_1} \cdot X_2$$
$$+ 0.3 \cdot \overline{X_1} \cdot \overline{X_2}$$



#### **Sum Out Variables**

| P(X) | $P(e) = 0.4 \cdot X_1 \cdot X_2$       |
|------|----------------------------------------|
| 0.4  | $+ 0.2 \cdot X_1 \cdot \overline{X}_2$ |
| 0.2  |                                        |
| 0.1  | $+ 0.1 \cdot X_1 \cdot X_2$            |
| 0.3  | $+0.3 \cdot X_1 \cdot X_2$             |

$$e: X_1 = 1$$

$$(e) = \mathbf{0.4} \cdot X_1 \cdot X_2$$

$$+ \mathbf{0.2} \cdot X_1 \cdot \overline{X_2}$$

$$+ 0.1 \cdot \overline{X_1} \cdot X_2$$

**T**Z

1

Set 
$$X_1 = 1, \overline{X_1} = 0, X_2 = 1, \overline{X_2} = 1$$

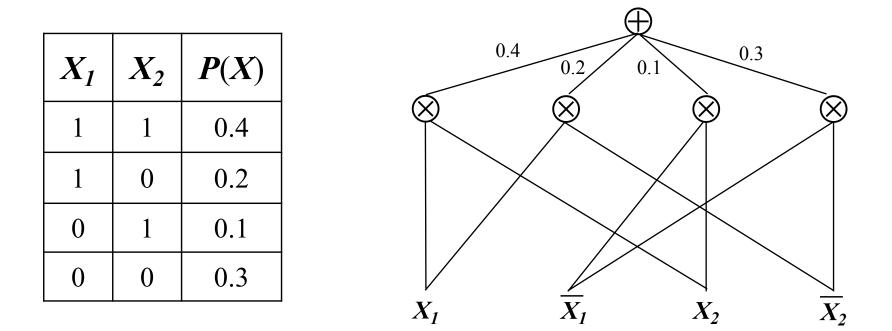
Easy: Set both indicators of X2 to 1



| <i>X</i> <sub>1</sub> | $X_2$ | <b>P</b> ( <b>X</b> ) |
|-----------------------|-------|-----------------------|
| 1                     | 1     | 0.4                   |
| 1                     | 0     | 0.2                   |
| 0                     | 1     | 0.1                   |
| 0                     | 0     | 0.3                   |



# Idea: Deeper Network Representation of a Graphical Model that encodes how to compute probabilities



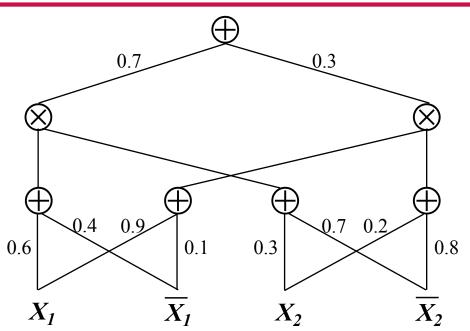


## Sum-Product Networks\* (SPNs)



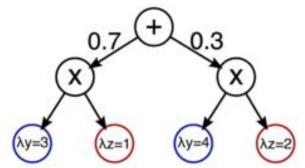
[Poon, Domingos UAI 2011]

A SPN S is a rooted DAG where: Nodes: Sum, product, input indicator Weights on edges from sum to children



\*SPNs are an instance of Arithmetic Circuits (ACs). ACs have been introduced into the AI literature more than15 years ago as a tractable representation of probability distributions [Darwiche CACM 48(4):608-647 2001]

# **Deep Probabilistic Inference Units**



SPNs can be compiled into flat, library-free code suitable for embedding in real-time applications and devices

|         |                |                 |           | Т           | ABLE II  |            |          |           |            |    |           |
|---------|----------------|-----------------|-----------|-------------|----------|------------|----------|-----------|------------|----|-----------|
| PERFORM | ANCE COMPARISO | ON. BEST END-TO | -END THRO | UGHPUTS (T) | , EXCLUD | ING THE CY | CLE COUN | TER MEASU | REMENTS, A | RE | TED BOLD. |
| -       |                |                 |           | -           |          | m owned I  |          | (         |            |    |           |

| Dataset   | Rows   | CPU<br>(µs) | T-CPU<br>(rows/<br>μs) | CPUF<br>(µs) | T-CPUF<br>(rows/<br>μs) | GPU<br>(µs) | T-GPU<br>(rows/<br>μs) | FPGA<br>Cycle<br>Counter | FPGAC<br>(µs) | T-FPGAC<br>(rows/<br>µs) | FPG.<br>(µ8) | pows/<br>pows/<br>ps) |
|-----------|--------|-------------|------------------------|--------------|-------------------------|-------------|------------------------|--------------------------|---------------|--------------------------|--------------|-----------------------|
| Accidents | 17009  | 2798.27     |                        |              | 7.87                    | 63090.94    | 0.27                   | 17249                    |               | 100                      | 696.00       | 24.44                 |
| Audio     | 20000  | 4271.78     |                        |              | 5.4                     |             | 5                      | 20317                    | 1             | A AN                     | 761.00       | 26.28                 |
| Netflix   | 20000  | 4892.22     |                        |              | 4.8                     | 0           |                        | 20322                    | 1             |                          | 654.00       | 30.58                 |
| MSNBC200  | 388434 | 15476.05    |                        |              | 30.5                    |             | 1                      | 388900                   | 19            |                          | 008.00       | 77.56                 |
| MSNBC300  | 388434 | 10060.78    |                        |              | 41.2                    |             | and a                  | 388810                   | 19            | 10.3                     | 933.00       | 78.74                 |
| NETCS     | 21574  | 791.80      |                        |              | 31.3                    | W           |                        | 21904                    | 1             |                          | 566.00       | 38.12                 |
| Plants    | 23215  | 3621.71     | 6.41                   | 3521.04      | 6.59                    | 67004.41    | 0.35                   | 23592                    | 117.96        | 196.80                   | 778.00       | 29.84                 |
| NIPS5     | 10000  | 25.11       | 398.31                 | 26.37        | 379.23                  | 8210.32     | 1.22                   | 10236                    | 51.18         | 195.39                   | 337.30       | 29.03                 |
| NIPS10    | 10000  | 83.60       | 119.61                 | 84.39        | 118.49                  | 11550.82    | 0.87                   | 10279                    | 51.40         | 194.57                   | 464.30       | 21.54                 |
| NIPS20    | 10000  | 191.30      | 52.27                  | 182.73       | 54.72                   | 18689.04    | 0.54                   | 10285                    | 51.43         | 194.46                   | 543.60       | 18.40                 |
| NIPS30    | 10000  | 387.61      | 25.80                  | 349.84       | 28,58                   | 25355.93    | 0.39                   | 10308                    | 51.80         | 193.06                   | 592.30       | 16.88                 |
| NIPS40    | 10000  | 551.64      | 18.13                  | 471.26       | 21.22                   | 30820.49    | 0.32                   | 10306                    | 51.53         | 194.06                   | 632.20       | 15.82                 |
| NIPS50    | 10000  | 812.44      | 12.31                  | 792.13       | 12.62                   | 36355.60    | 0.28                   | 10559                    | 52.80         | 189.41                   | 720.60       | 13.88                 |
| NIPS60    | 10000  | 1046.38     | 9.56                   | 662.53       | 15.09                   | 40778.36    | 0.25                   | 12271                    | 61.36         | 162.99                   | 799.20       | 12.51                 |
| NIPS70    | 10000  | 1148.17     | 8.71                   | 1134.80      | 8.81                    | 46759.26    | 0.21                   | 14022                    | 70.11         | 142.63                   | 858.60       | 11.65                 |
| NIPS80    | 10000  | 1556.99     | 6.42                   | 1277.81      | 7.83                    | 63217.99    | 0.16                   | 14275                    | 78.51         | 127.37                   | 961.80       | 10.40                 |

# And also learning is conceptually easy

[Peharz, Vergari, Molina, Stelzner, Trapp, Kersting, Ghahramani UDL@UAI 2018]

#### Random sumproduct networks

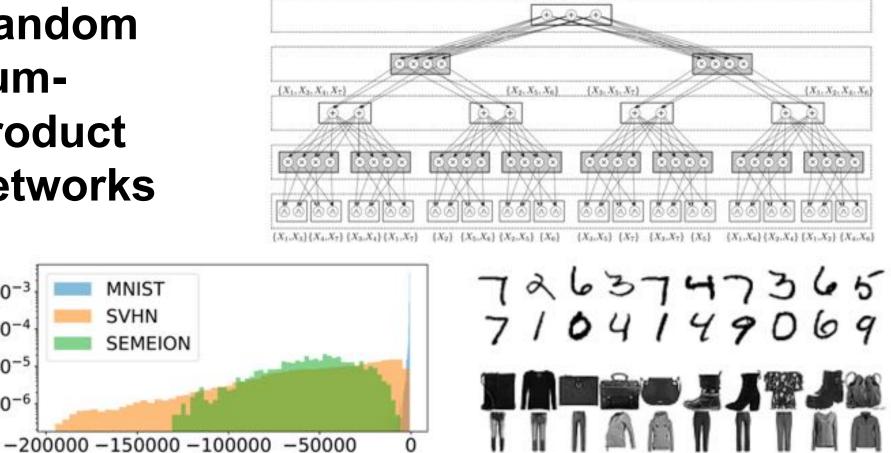
 $10^{-3}$ 

 $10^{-4}$ 

 $10^{-5}$ 

 $10^{-6}$ 

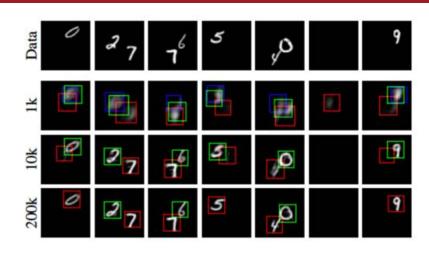
log-likelihood histogram of



 $\{X_1, X_2, X_3, X_4, X_5, X_6, X_7\}$ 

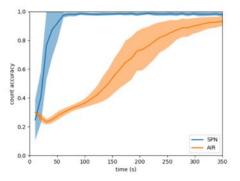


# And also learning is conceptually easy

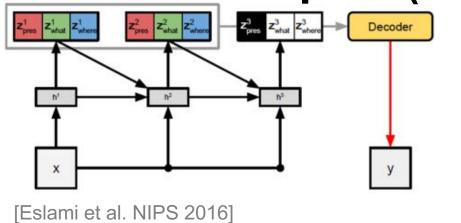


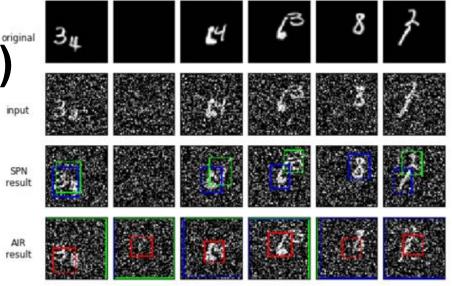
# Explicit AIR

[Stelzner, Peharz, Kersting 2018]



#### **Attend Infer Repeat (AIR)**



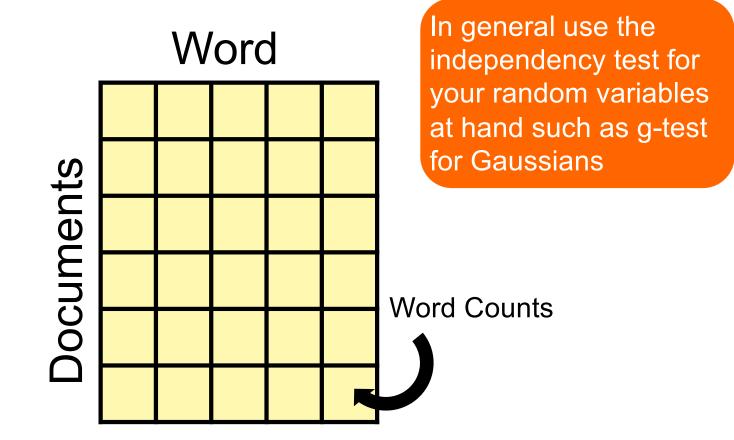




# Or you do greedy learning



Testing independence of random variables using e.g. nonparametric tests

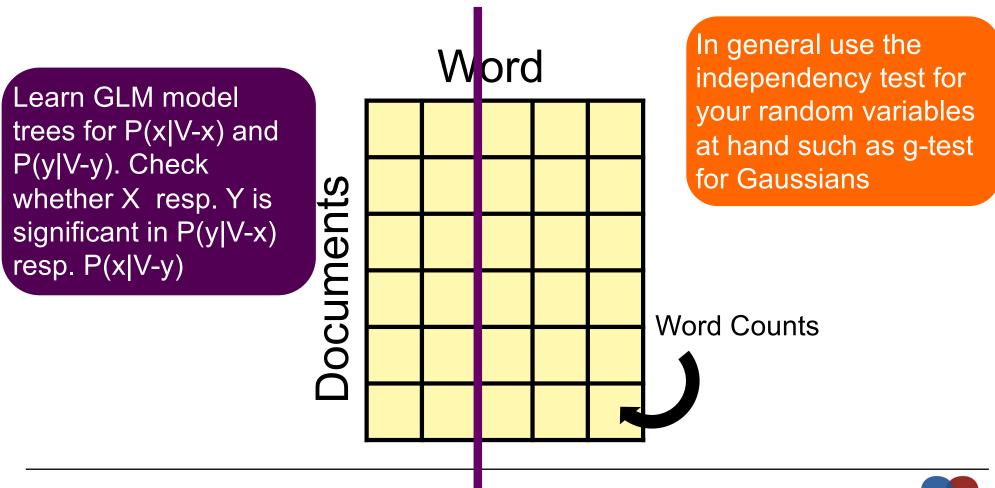


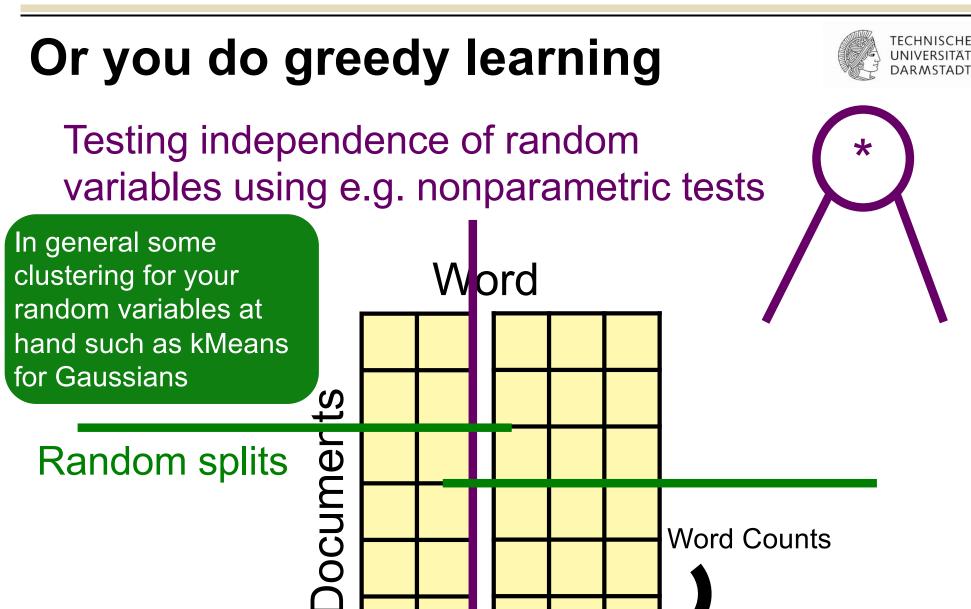


# Or you do greedy learning

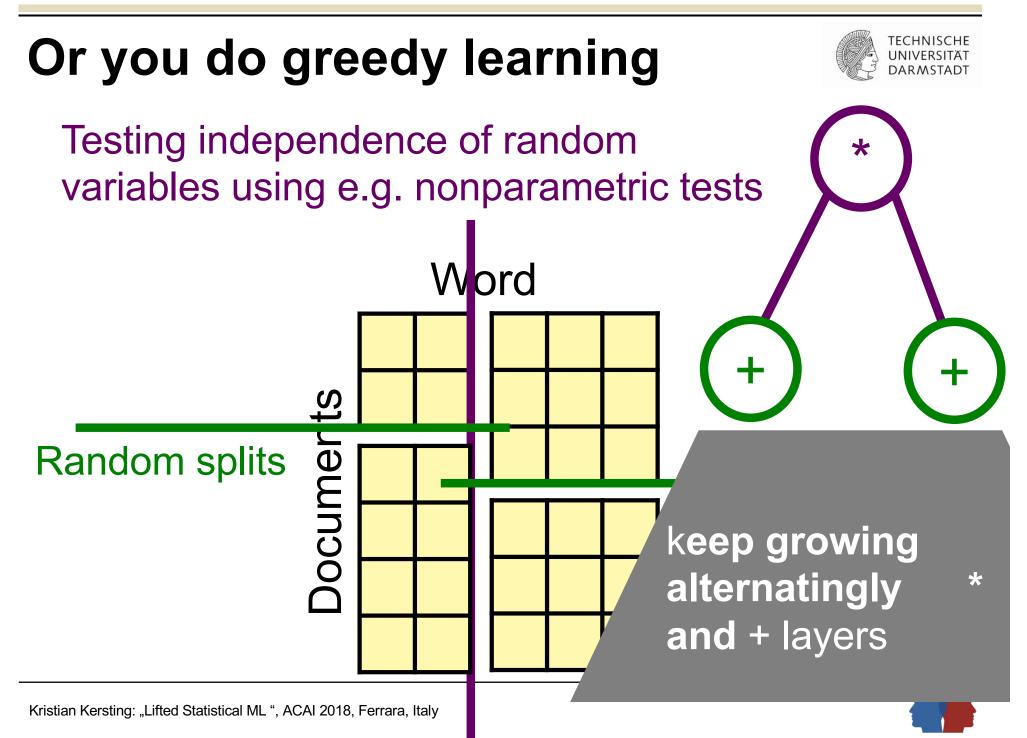


Testing independence of random variables using e.g. nonparametric tests

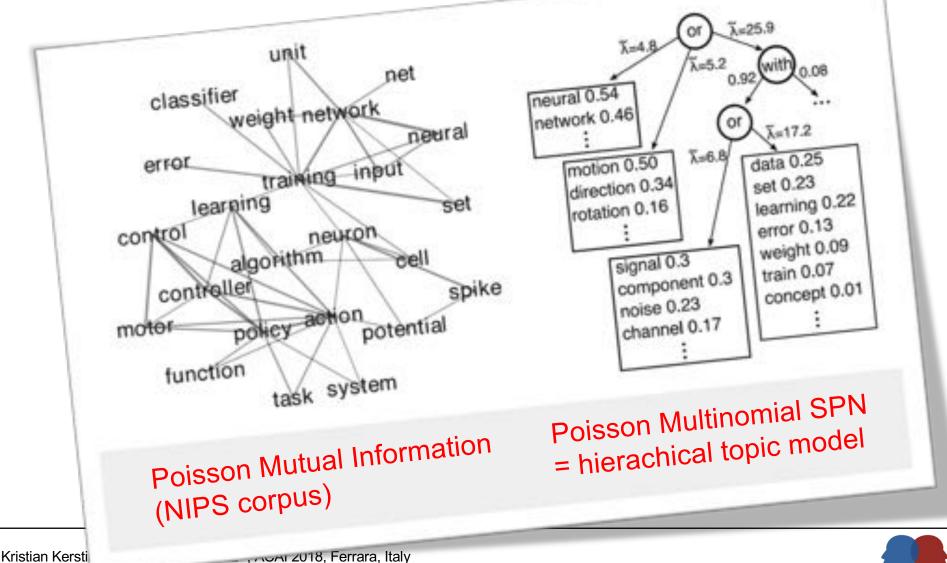




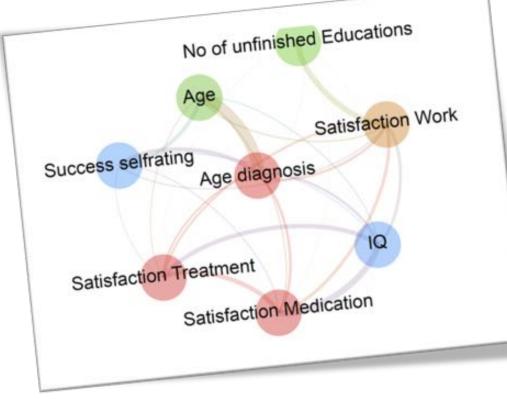




#### **Probabilistic modelling made easy:** Build multivariate distribution by stacking univariate ones

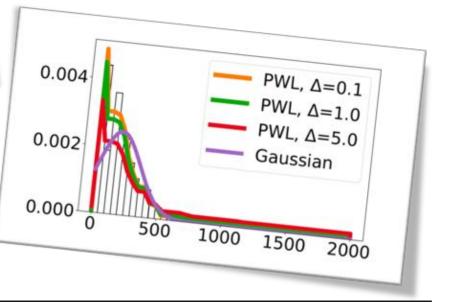


# ... even in a distribution-agnostic way



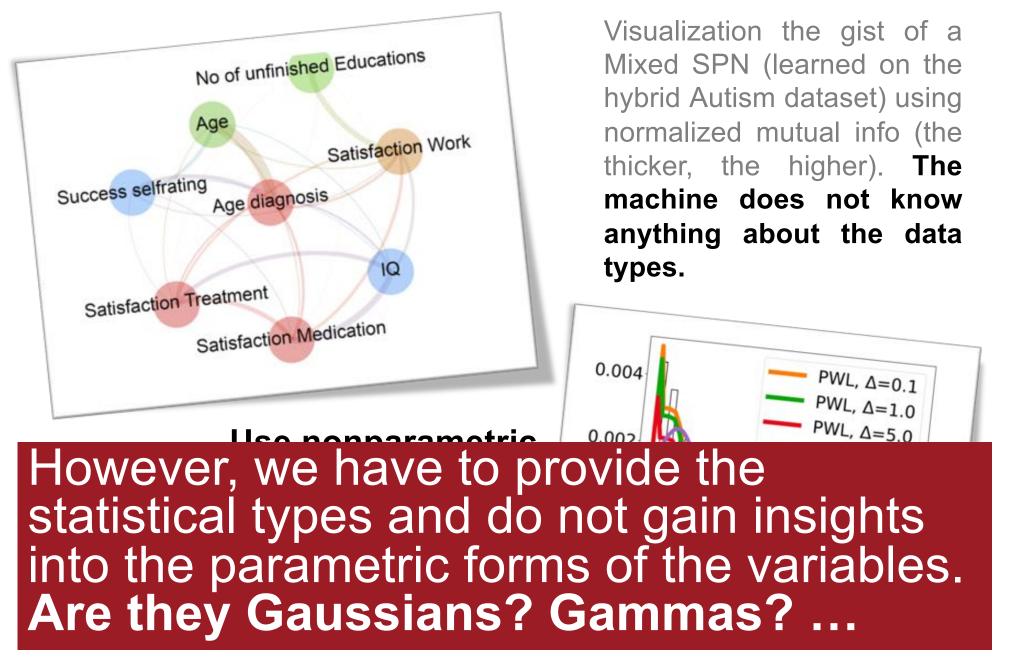
#### Use nonparametric independency tests and piece-wise linear approximations

Visualization the gist of a Mixed SPN (learned on the hybrid Autism dataset) using normalized mutual info (the thicker, the higher). The machine does not know anything about the data types.

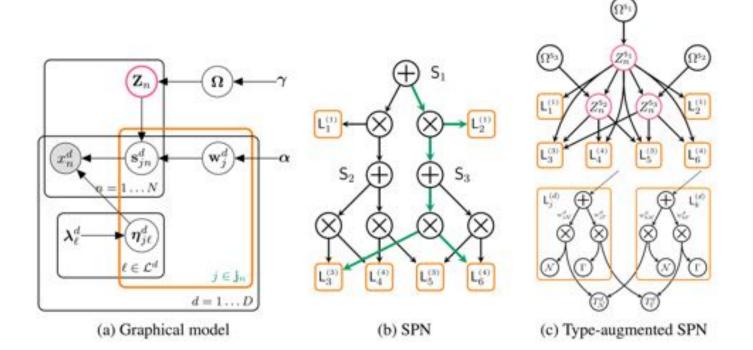




# ... even in a distribution-agnostic way



# **Automatic Bayesian Density Analysis**

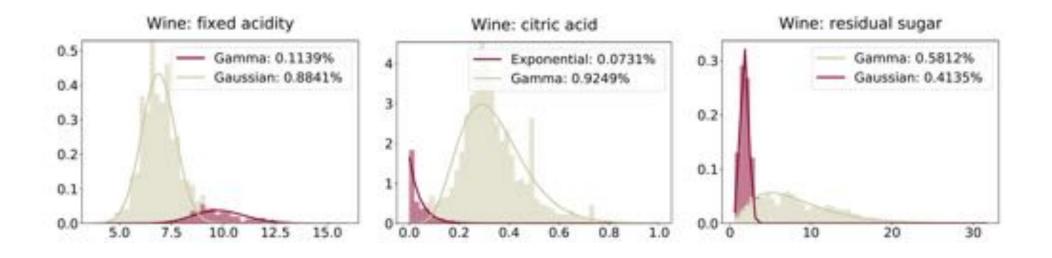


Bayesian discovery of statistical types and parametric forms of variables

#### Type-agnostic deep probabilistic learning



# **Automatic Bayesian Density Analysis**



# ... can automatically discovers the statistical types and parametric forms of the variables



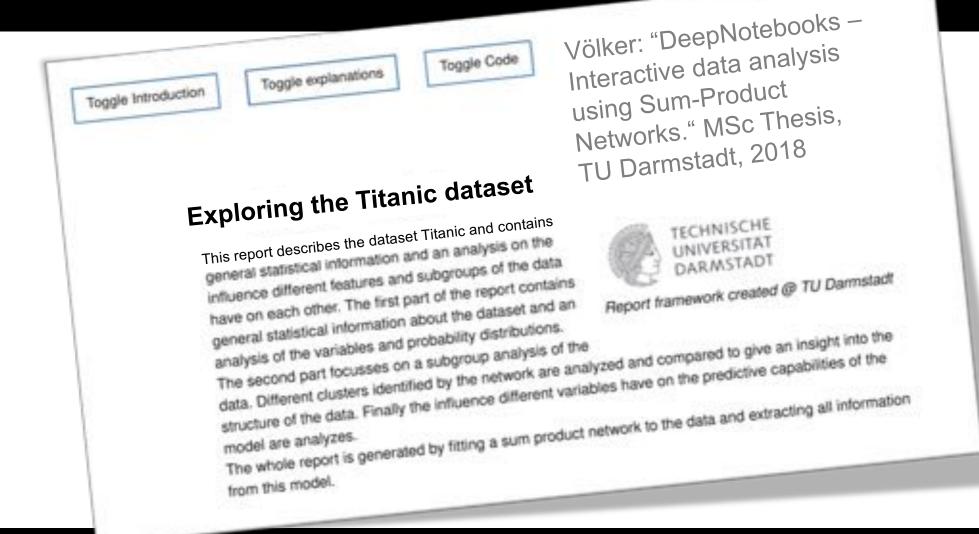
# **Automatic Bayesian Density Analysis**

|             |                   | transductive setting                    |       |                                       |                  |       |                   |             |  |  |
|-------------|-------------------|-----------------------------------------|-------|---------------------------------------|------------------|-------|-------------------|-------------|--|--|
|             |                   | 10%                                     |       |                                       | 50%              |       |                   | 70%-10%-20% |  |  |
|             | ISLV              | ABDA                                    | MSPN  | ISLV                                  | ABDA             | MSPN  | ABDA              | MSPN        |  |  |
| Abalone     | $-1.15 \pm 0.12$  | $-0.02 \pm 0.03$                        | 0.20  | $-0.89 \pm 0.36$                      | -0.05+0.02       | 0.14  | 2 22+0 02         | 9.73        |  |  |
| Adult       |                   | $-0.60 \pm 0.02$                        | -3.46 |                                       | $-0.69 \pm 0.01$ | -5.83 | $-5.91 \pm 0.01$  | -44.07      |  |  |
| Australian  | $-7.92 \pm 0.96$  | $-1.74 \pm 0.19$                        | -3.85 | $-9.37 \pm 0.69$                      | $-1.63 \pm 0.04$ | -3.76 | $-16.44 \pm 0.04$ | -36.14      |  |  |
| Autism      | $-2.22 \pm 0.06$  | $-1.23 \pm 0.02$                        | -1.54 | $-2.67 \pm 0.16$                      | $-1.24 \pm 0.01$ | -1.57 | $-27.93 \pm 0.02$ | -39.20      |  |  |
| Breast      | $-3.84 \pm 0.05$  | $-2.78 \pm 0.07$                        | -2.69 | $-4.29 \pm 0.17$                      | $-2.85 \pm 0.01$ | -3.06 | $-25.48 \pm 0.05$ | -28.01      |  |  |
| Chess       | $-2.49 \pm 0.04$  | $-1.87 \pm 0.01$                        | -3.94 | $-2.58 \pm 0.04$                      | $-1.87 \pm 0.01$ | -3.92 | $-12.30 \pm 0.00$ | -13.01      |  |  |
| Crx         | $-12.17 \pm 1.41$ | $-1.19 \pm 0.12$                        | -3.28 | $-11.96 \pm 1.01$                     | $-1.20 \pm 0.04$ | -3.51 | $-12.82 \pm 0.07$ | -36.26      |  |  |
| Dermatology | $-2.44 \pm 0.23$  | -0.96±0.02                              | -1.00 | $-3.57 \pm 0.32$                      | $-0.99 \pm 0.01$ | -1.01 | $-24.98 \pm 0.19$ | -27.71      |  |  |
| Diabetes    | $-10.53 \pm 1.51$ | $-2.21 \pm 0.09$                        | -3.88 | $-12.52 \pm 0.52$                     | $-2.37 \pm 0.09$ | -4.01 | $-17.48 \pm 0.05$ | -31.22      |  |  |
| German      | $-3.49 \pm 0.21$  | $-1.54 \pm 0.01$                        | -1.58 | $-4.06 \pm 0.28$                      | $-1.55 \pm 0.01$ | -1.60 | $-25.83 \pm 0.05$ | -26.05      |  |  |
| Student     | $-2.83 \pm 0.27$  | $-1.56 \pm 0.03$                        | -1.57 | $-3.80 \pm 0.29$                      | $-1.57 \pm 0.01$ | -1.58 | $-28.73 \pm 0.10$ | -30.18      |  |  |
| Wine        | $-1.19 \pm 0.02$  | $\textbf{-0.90}{\scriptstyle \pm 0.02}$ | -0.13 | $\textbf{-1.34}{\scriptstyle\pm0.01}$ | $-0.92 \pm 0.01$ | -0.41 | $-10.12 \pm 0.01$ | -0.13       |  |  |
| wins        | 0                 | 9                                       | 3     | 0                                     | 10               | 2     | 10                | 2           |  |  |

# ... but also models its uncertainty about the statistical types and parametric forms, which can lead to better models

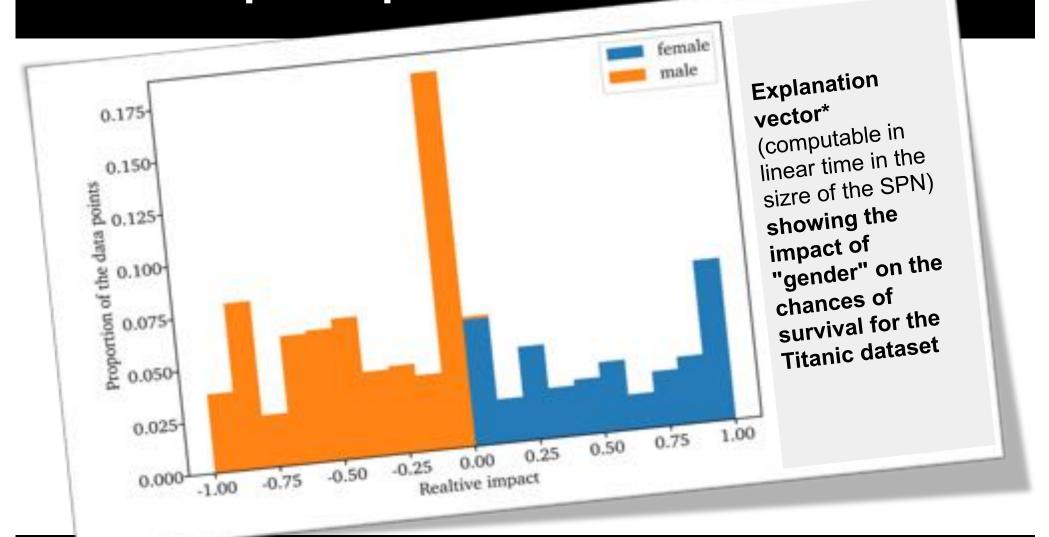


# The machine understands the data with few expert input ...



#### ...and can compile data reports automatically

\*[Baehrens, Schroeter, Harmeling, Kawanabe, Hansen, Müller JMLR 11:1803-1831, 2010] **The machine understands the data** with no expert input ....



#### ...and can compile data reports automatically

## What have we learnt about SPNs?



#### Sum-product networks (SPNs)

- DAG of sums and products
- They are instances of Arithmetic Circuits (ACs)
- Compactly represent partition function
- Learn many layers of hidden variables

#### **Efficient marginal inference**

Easy learning

#### **Can outperform well-known alternatives**



#### Take-away messges of Part I



- Graphical models are great to deal with probability distributions
- To make them "tractable" we can employ symmetries
- Or we build directly "tractable" graphical models, i.e., computation graphs as in TensorFlow but with probabilistic semantics
- This can lead to inference on the device and can free the user from making assumptions on the statistical form of the data



#### **Lifted Statistical Machine Learning**

Computational modeling of complex AI systems that learn and think

#### Part II: Statistical Relational AI

Thanks to Babak Ahmadi, Vincent Conitzer, Rina Dechter, Luc De Raedt, Pedro Domingos, Peter Flach, Dieter Fensel, Florian Ficher, Vibhav Gogate, Carlos Guestrin, Daphen Koller, Nir Friedman, Martin Mladenov, Ray Mooney, Sriraam Natarajan, David Poole, Fabrizio Riguzzi, Dan Suciu, Guy van den Broeck, and many others for making their slides publically available Symbolic Complexity Structure Logic Abstraction Resolution Generalization Modules

#### Numeric Noise Probabilities Values Graphical

Values Graphical Expectation Optimization Regularization









#### **Goals of Part II**

Get in touch with

- 1. Statistical Relational Learning and Probabilistic Programming, and
- 2. understand that this covers the whole Al spectrum, leading to Systems Al

Caution! Necessarily incomplete!



# Let's consider a simple relational domain: Reviewing Papers



- The grade of a paper at a conference depends on the paper's quality and the difficulty of the conference.
- Good papers may get A's at easy conferences
- Good papers may get D's at top conference
- Weak papers may get B's at good conferences
- . . .



# (Reviewing) Bayesian Network



Dandom Variables

| Direct Influence |        |      |       |     |         |      |  |  |
|------------------|--------|------|-------|-----|---------|------|--|--|
| P(Qual)          |        |      |       |     | P(Diff) |      |  |  |
| low              | middle | high | Grade | low | middle  | high |  |  |
| 0.3              | 0.5    | 0.2  |       | 0.2 | 0.3     | 0.5  |  |  |

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i | X_{i-1},...,X_1)$$

|      |        | P(Grade) |     |     |  |  |  |  |
|------|--------|----------|-----|-----|--|--|--|--|
| Qual | Diff   | С        | b   | а   |  |  |  |  |
| low  | low    | 0.2      | 0.5 | 0.3 |  |  |  |  |
| low  | middle | 0.1      | 0.7 | 0.2 |  |  |  |  |
|      |        |          |     |     |  |  |  |  |

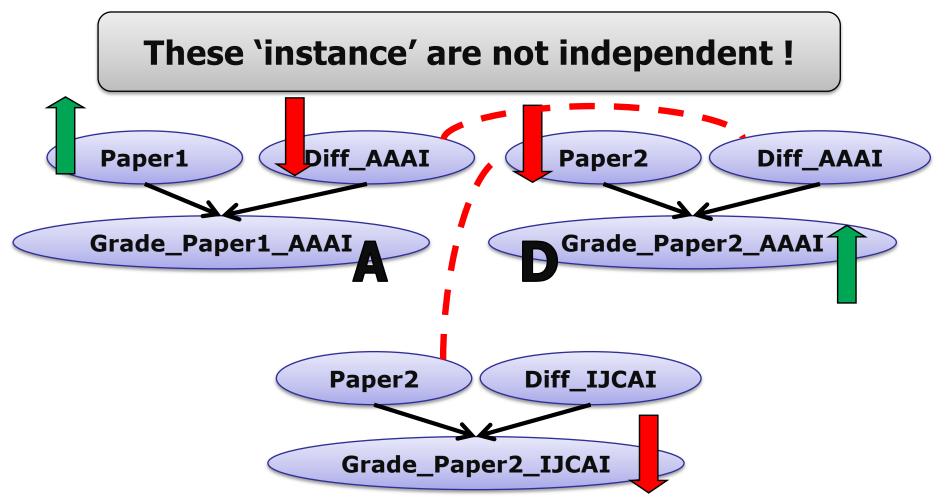


# The real world, however, ...



[inspired by Friedman and Koller]

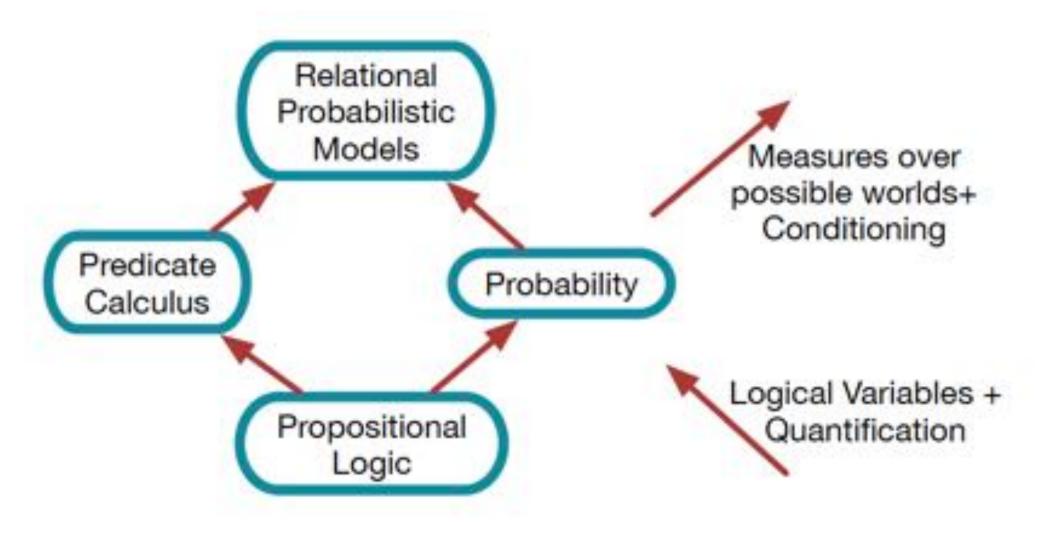
### ... has inter-related objects





# Therefore we want to combine probabilities and logic







# **Systems AI:** the computational and mathematical modeling of complex AI systems.



Eric Schmidt, Executive Chairman, Alphabet Inc.: Just Say "Yes", Stanford Graduate School of Business, May 2, 2017.https://www.youtube.com/watch?v=vbb-AjiXyh0. But also see e.g. Kordjamshidi, Roth, Kersting: "Systems AI: A Declarative Learning Based Programming Perspective." IJCAI-ECAI 2018.

For Systems AI we have to deeply understand data, knowledge and reasoning in a large number of forms

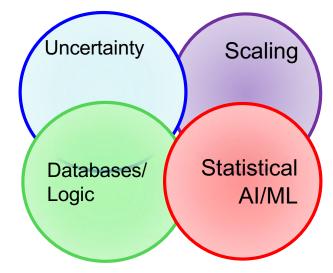
# Crossover of Statistical AI/ML with data & programming abstractions

Statistical Relational Artificial Intelligence Logic, Probability, and Computation

Luc de Raolt Keistan Kersting Seicaam Naturijan David Poole building general-purpose thinking and learning machines

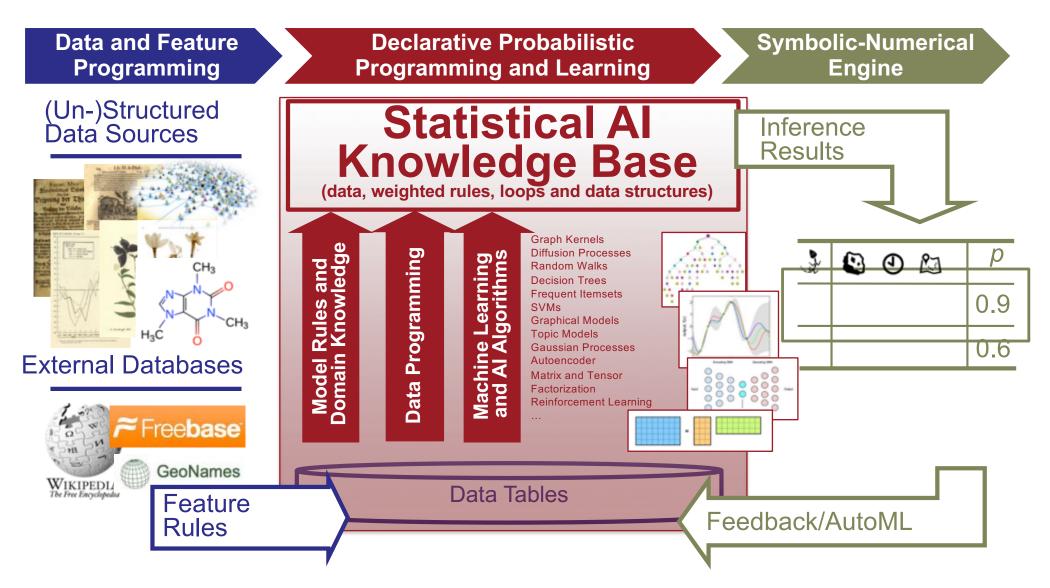
make the AI/ML expert more effective

increases the number of people who can successfully build AI/ML applications



De Raedt, Kersting, Natarajan, Poole: Statistical Relational Artificial Intelligence: Logic, Probability, and Computation. Morgan and Claypool Publishers, ISBN: 9781627058414, 2016.

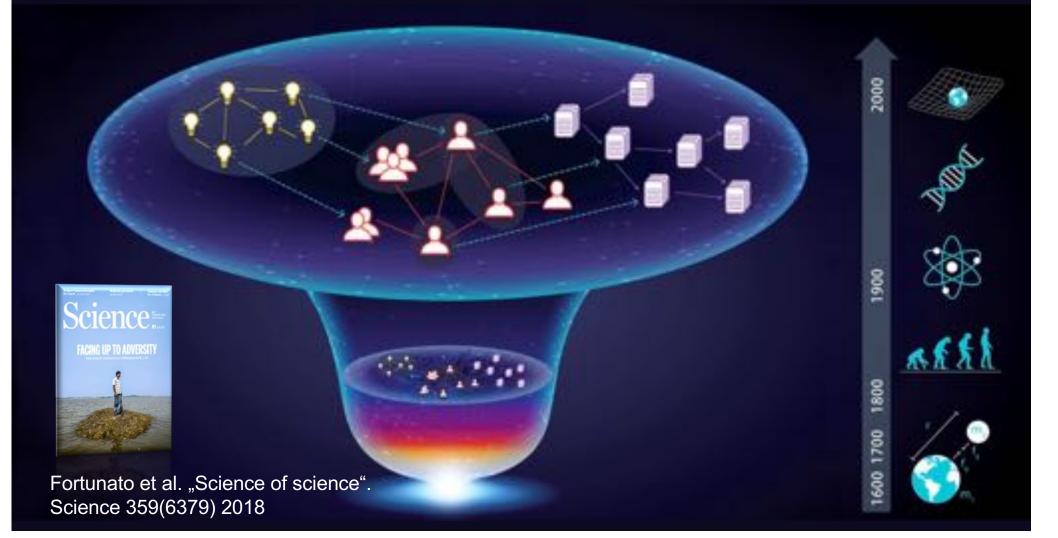
# This establishes a novel "Deep Al"

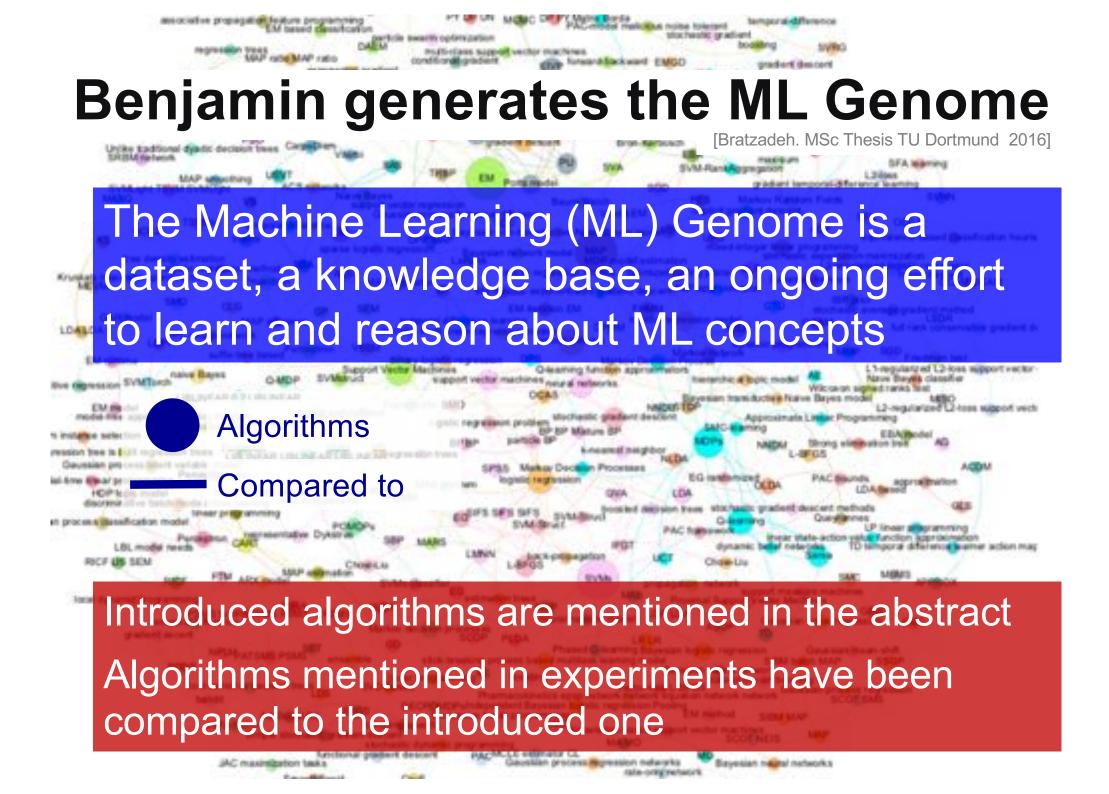


[Ré et al. IEEE Data Eng. Bull.'14; Natarajan, Picado, Khot, Kersting, Ré, Shavlik ILP'14; Natarajan, Soni, Wazalwar, Viswanathan, Kersting Solving Large Scale Learning Tasks'16, Mladenov, Heinrich, Kleinhans, Gonsior, Kersting DeLBP'16, ...



Machine Learning can be seen as an expanding and evolving network of ideas, scholars, and papers. Can machines read this data?





### And connects well to database theory





Jim Gray Turing Award 1998 "Automated Programming" Mike Stonebraker Turing Award 2014 "One size does not fit all"

# ... and cognitive science

"How do we humans get so much from so little?" and by that I mean how do we acquire our understanding of the world given what is clearly by today's engineering standards so little data, so little time, and so little energy.





Lake, Salakhutdinov, Tenenbaum, Science 350 (6266), 1332-1338, 2015 Tenenbaum, Kemp, Griffiths, Goodman, Science 331 (6022), 1279-1285, 2011



# But first let us clarify how people view relations in this context **SO WHAT ARE RELATIONS?**



# What are Relations?



There are several types of relations and in turn there are several views on what (statitical) relational learning is

- 1. Relations provide additional correlations/ regularization
  - If two words occure frequently in the same context (page, paragraph, sentence, ...) then there must be some semantic relation between them
- 2. Often extensional (data) only, for one relation
  - Covariance function, distance functions, kernel functions, graphs, tensors, random walks with restarts...



# What are Relations?



# 3. Relations are symmetries/redundancies in the model

E.g. lifted inference based on bisimulation

#### 4. Hypergraph representations of data

- Multiple (extensional) relations
- Random walks with restarts as similarity measure, produce path features, tensor-based embeddings
- 5. Full-fledged relational (or logical) knoweldge as considered in this tutorial
  - Multiple (often typed) relations
  - Intensional formulas (often Horn clauses) ancestor(X,Z) ^ parent(Z,Y) ⇒ ancestor(X,Y)





# Over the years many SRL frameworks have been proposed: **THE SRL ALPHABET SOUP**

Easy to miss the big picture but thankfully they all can be structured along some

### **KEY REPRESENTATION DIMENSIONS**



### Key Dimensions with some prototypes



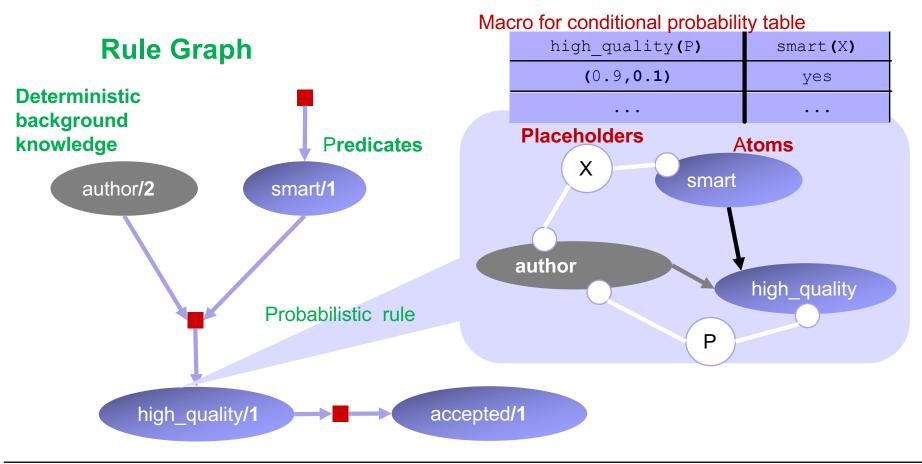


#### Directed: Probabilistic Relational Models (PRMs) Bayesian logic Programs (BLPs)

[Getoor et al. 2002; Kersting, De Raedt 2007]

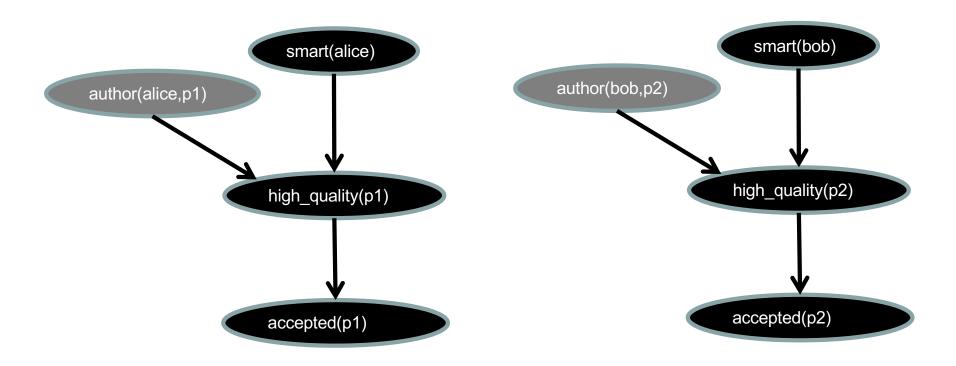
 $\forall x \ author(x, p) \land smart(x) \Rightarrow high\_quality(p)$ 

 $\forall x high\_quality(p) \Rightarrow accepted(p)$ 



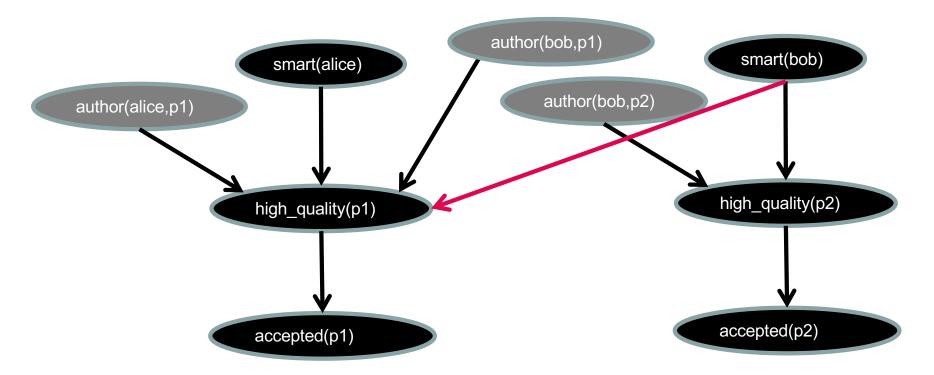


# Inference on BN constructed by instantiating the rules/ macros using back- or forward chaining



So, we can deal with a variable number of objects. The induced BN depends on the domain elements and the background knowledge we have.

# Inference on BN constructed by instantiating the rules/ macros using back- or forward chaining

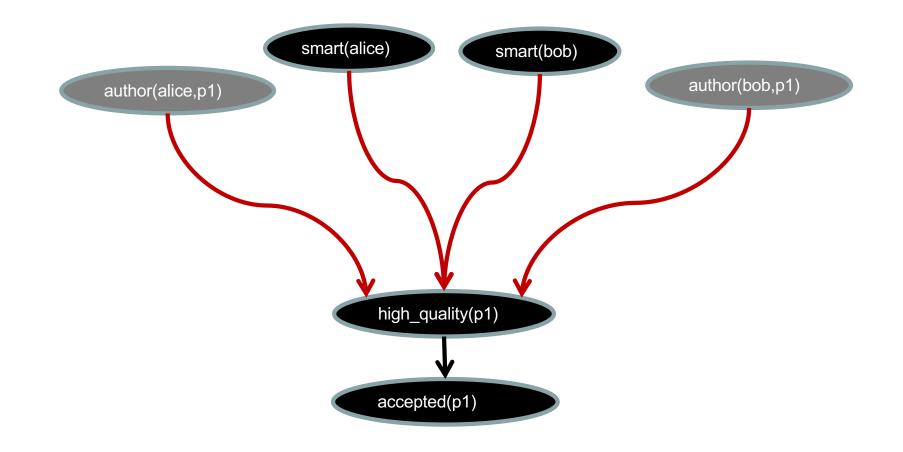


But what happens if we also have author(bob,p1)?

So, we can deal with a variable number of objects. The induced BN depends on the domain elements and the background knowledge we have.

### **Directed: Aggregate Dependencies**

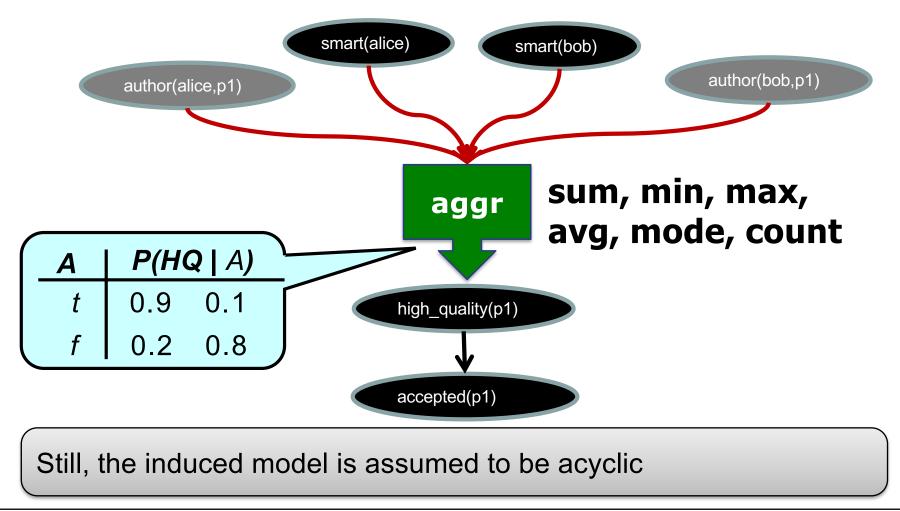
We have several conditional probabilities instantiated from the same clause, which we have to aggregate

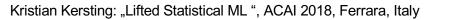




### **Directed: Aggregate Dependencies**

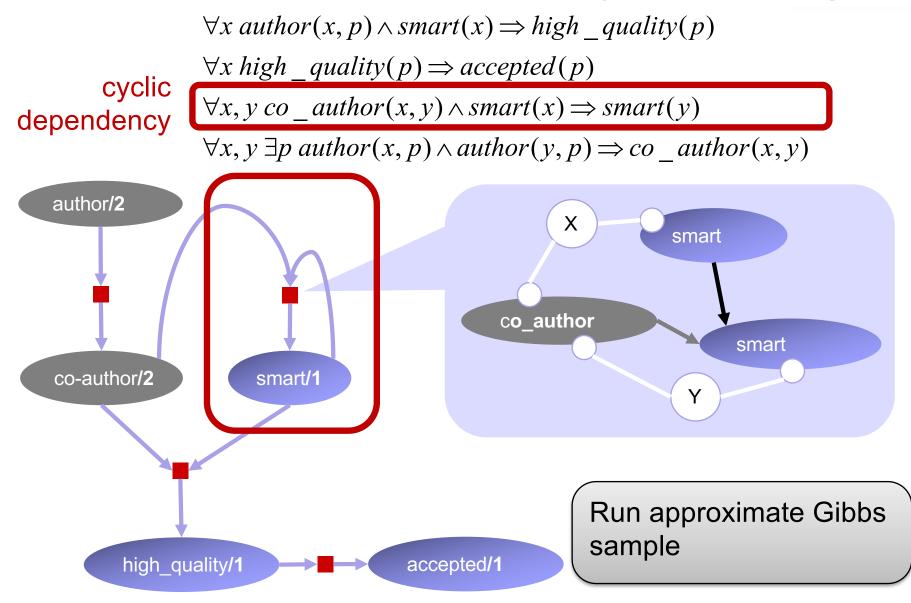
We have several conditional probabilities instantiated from the same clause, which we have to aggregate





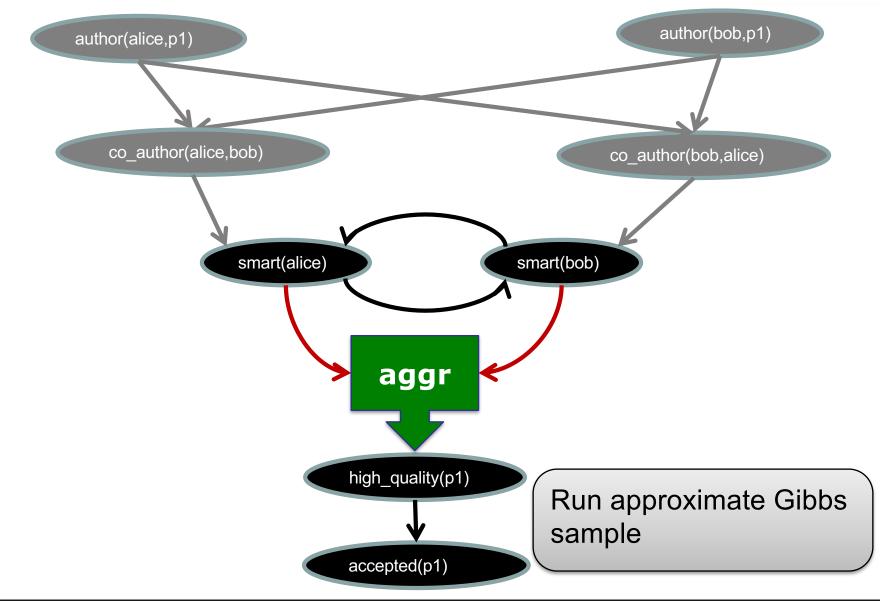


#### **Option 1 : Relational Dependency Networks (RDNs)**





### **Option 1 : Relational Dependency Networks (RDNs)**



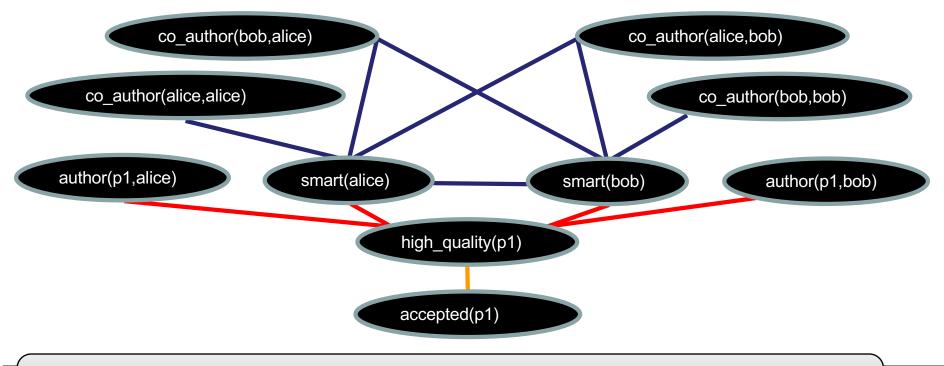


### **Option 2: Markov Logic Networks**



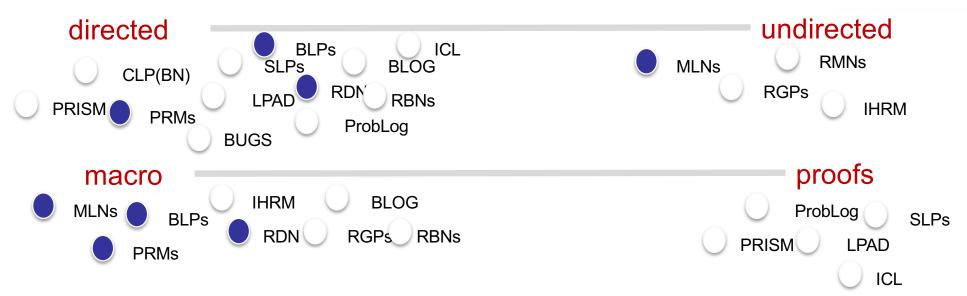
Suppose we have constants: alice, bob and p1

- 1.5  $\forall x \ author(x, p) \land smart(x) \Rightarrow high\_quality(p)$
- 1.1  $\forall x high\_quality(p) \Rightarrow accepted(p)$
- 1.2  $\forall x, y \ co \_author(x, y) \Rightarrow (smart(x) \Leftrightarrow smart(y))$
- $\infty$   $\forall x, y \exists p author(x, p) \land author(y, p) \Rightarrow co\_author(x, y)$

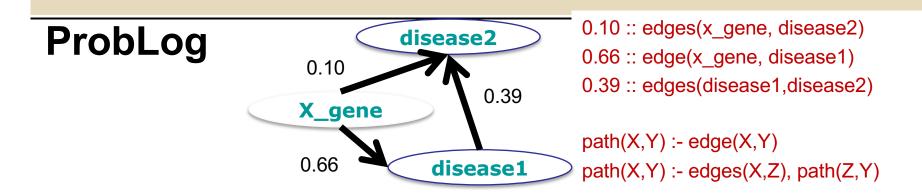


Compile to an undirected model

### Key Dimensions with some prototypes

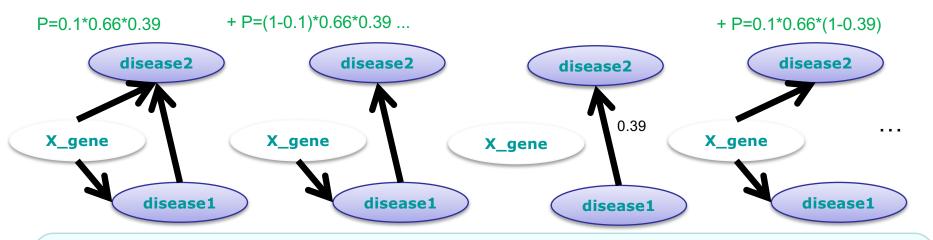




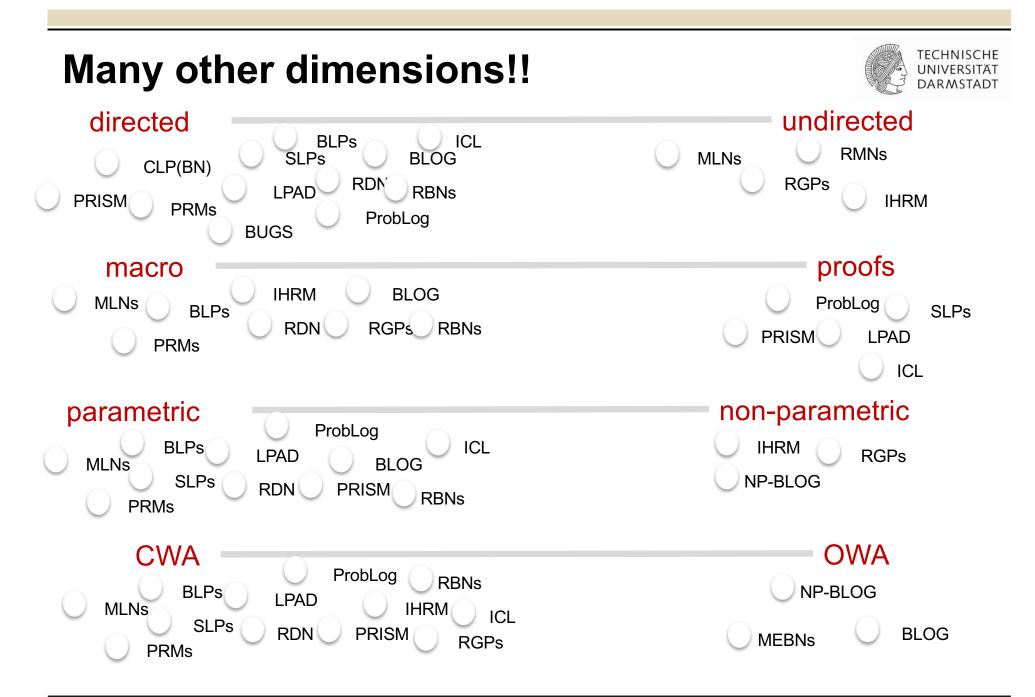


Label of a clause/fact c is the probability that c belongs to the target program; Facts/clauses independent of each other Defines a distribution over programs

P(path(x\_gene,disease2)) = sum of probs of all programs that entail the query



**Exponentially many subprograms**! To avoid explosion, consider proofs/paths only + store them e.g. in a BDD in order to count correctly





# And actually they span the whole Al spectrum



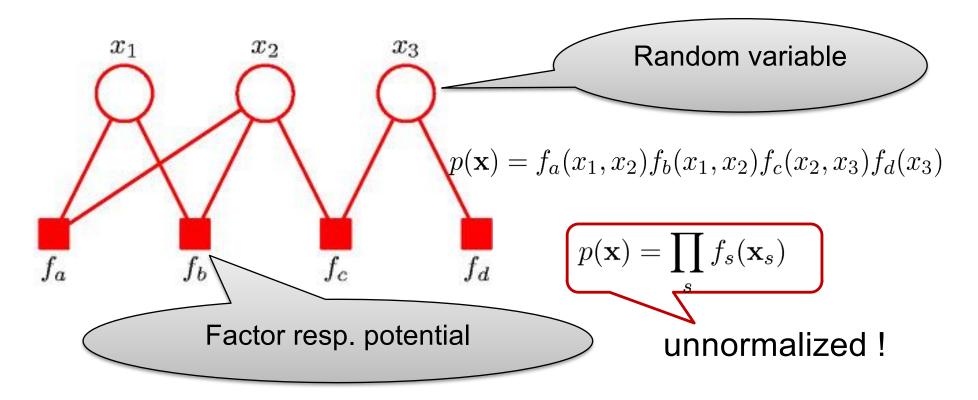
**Relational topic models** Mixed-membership models **Relational Gaussian processes Relational reinforcement learning** (Partially observable) MDPs Systems of linear equations Kalman filters Declarative information networks

. .

So, should we worry about the soup?

# This soup boiled down to Graphical Models as intermediate representation

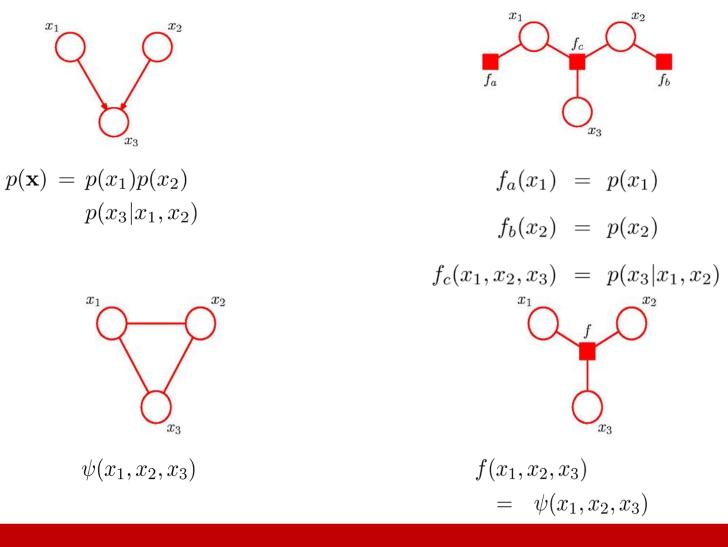
Distributions can naturally be represented as Factor Graphs



There is an edge between a circle and a box if the variable is in the domain/scope of the factor

### **Factor Graphs from Graphical Models**





#### Similar "boiling down" process is going on in StarAI!

Kristian Kersting: "Lifted Statistical ML", ACAI 2018, Ferrara, Italy

#### **Boiled-Down SRL Alphabet Soup**



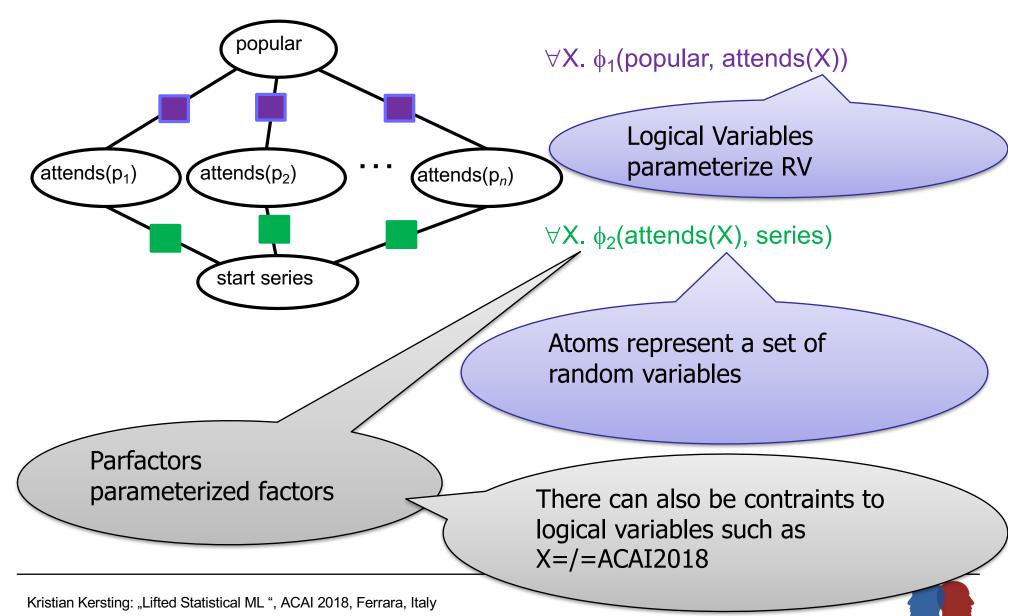
Given a relational model in your language of choice, a set of constants and a query, **compile** everything **into an intermediate respresentation** 

(logically parameterized) Factor graphs
BDDs, Artihmetic Circuits, d-DNNFs, ...
Weighted CNFs

Run (lifted) inference



#### Rules + Potential: Logically Parameterized Factors (parfactors) [Poole 2003; de Salvo Braz et al. 2005,...]



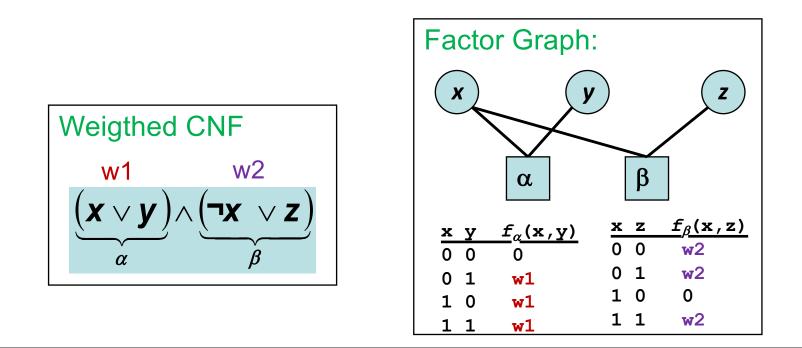
### **Rules + Weights: Weighted CNF**



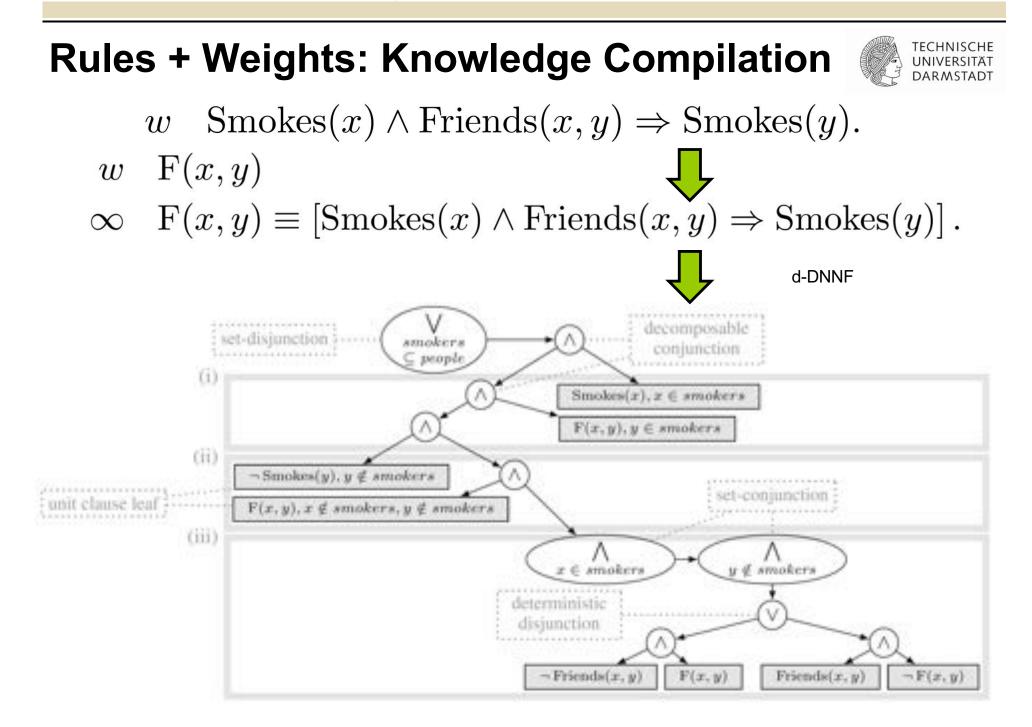
Weighted MAX-SAT as mode finding for log-linear distributions Each configuration has a cost: the sum of the weights of the unsatisfied (ground) clauses.

An infinite cost gives a 'hard' clause.

Goal: find an assignment with minimal cost.







#### And even low-level C/C++ programs

 $\{\langle \{x,m\}, r(x,m) \land s(x,m), 1.2 \rangle, \langle \{x,m\}, s(x,m) \land t(x), 0.2 \rangle\}$ 

- 1. v2=0;
- 2. for (int i = 0; i <= 2; i++){

6. 
$$v^2 += choose(2, i) * pow(2, 2-i)$$

#### What have we learnt so far in Part II?

There are several ways to specify relational probabilistic models

# The goal is not to have a probabilistic characterization

# Exising Frameowrks highlight different aspects of relational modeling

Semantically this soup boiled down to weighted CNFs, factor graphs, parfactors, diagrams and even program code





# How do we learn relational models?

#### Goals

- Parameter Estimation
- (Vanilla) relational learning approach
- •nFOIL, Hypergraph Lifting, and Boosting





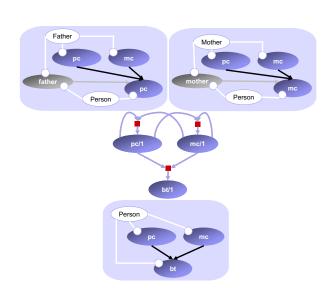
## PARAMETER ESTIMATION FOR RELATIONAL MODELS

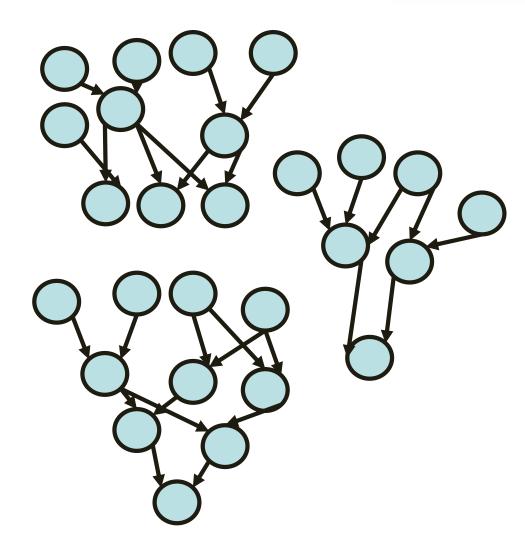


## **Relational Parameter Estimation**



|                 | Background                |  |  |  |  |
|-----------------|---------------------------|--|--|--|--|
| Model(1)        | m(ann.dorothy),           |  |  |  |  |
| pc(brian)=b,    |                           |  |  |  |  |
| • • • •         | f(brian,dorothy),         |  |  |  |  |
| bt(ann)=a.      | ily,fred),                |  |  |  |  |
| bt( Model(2)    | <u> </u>                  |  |  |  |  |
| bt( bt(cecily)= | =ab, <sup>y</sup> ,fred), |  |  |  |  |
| bt(henry)=      | hob).                     |  |  |  |  |
|                 |                           |  |  |  |  |
| bt(fred)=?      | ?, <u>Model(3)</u>        |  |  |  |  |
| bt(kim)=a       | a, pc(rex)=b,             |  |  |  |  |
| bt(bob)=b       | bt(doro)=a,               |  |  |  |  |
|                 |                           |  |  |  |  |
|                 | bt(brian)=?               |  |  |  |  |
|                 |                           |  |  |  |  |

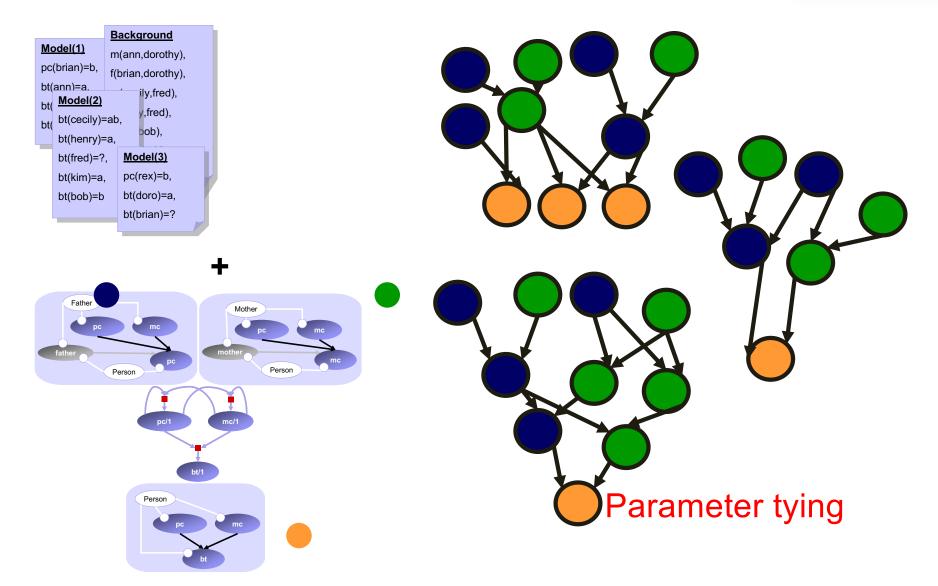






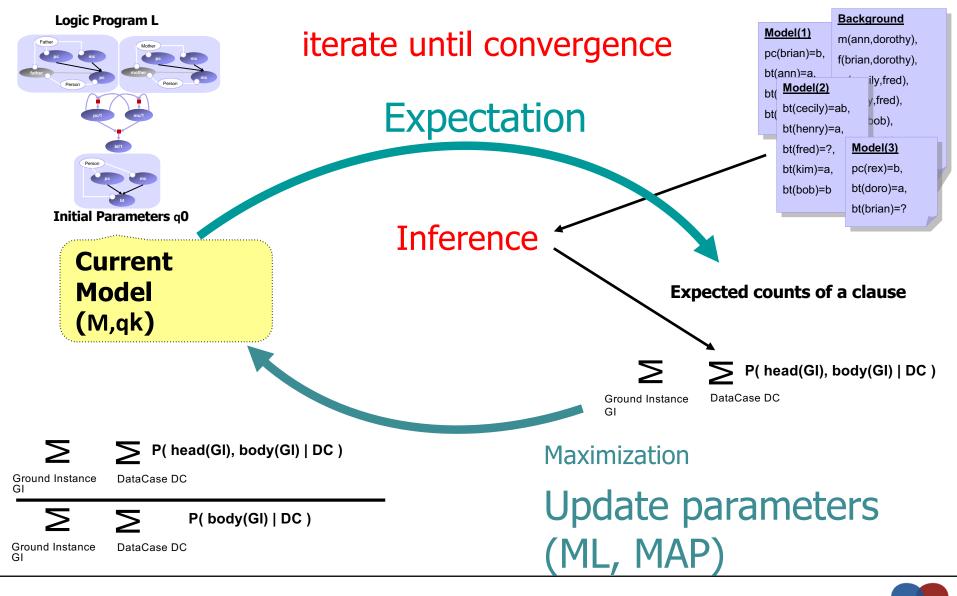
## **Relational Parameter Estimation**







## So, we can apply "standard" EM

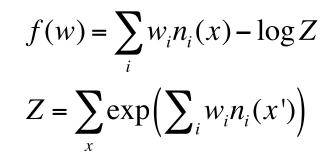




## **Generative Learning**



Function to optimize:



Gradient:

 $\frac{\partial}{\partial w_j} f(w) = n_j(x) - \frac{1}{Z} \sum_{x'} \exp\left(\sum_i w_i n_i(x')\right) n_j(x')$  $= n_j(x) - \sum_{x'} P(x') n_j(x')$  $= n_j(x) - E[n_j(x)]$ 

Counts in training data

Weighted sum over all possible worlds No evidence, just sets of constants Very hard to approximate

It is #P-complete to count the number of true groundings. Therefore, one often sticks to approximations

## **Pseudo-likelihood**



Function to optimize:  $PL(x) = \prod_{l} P(X_{l} = x_{l} \mid MB(x_{l}))$  $\log PL(x) = \sum_{l} \log P(X_l = x_l \mid MB(x_l))$  $P(X_{l} = x_{l} | MB(x_{l})) = \frac{P(x)}{P(x_{[X_{l}=0]}) + P(x_{[X_{l}=1]})}$  $1/Z \exp(\Sigma w_i n_i(x))$  $1/Z \exp(\Sigma w_i n_i(x_{[X_i=0]})) + 1/Z \exp(\Sigma w_i n_i(x_{[X_i=1]}))$ Gradient:  $\frac{\partial}{\partial w_j} \log PL(x) = \sum_l n_j(x) - P(X_l = 0 | MB(X_l)) n_j(x_{[X_l = 0]}) - P(X_l = 1 | MB(X_l)) n_j(x_{[X_l = 1]})$  $= \sum n_{i}(x) - E_{x'_{i}}[n_{i}(x_{[X_{i}=x'_{i}]})]$ 



## **Pseudo-likelihood**



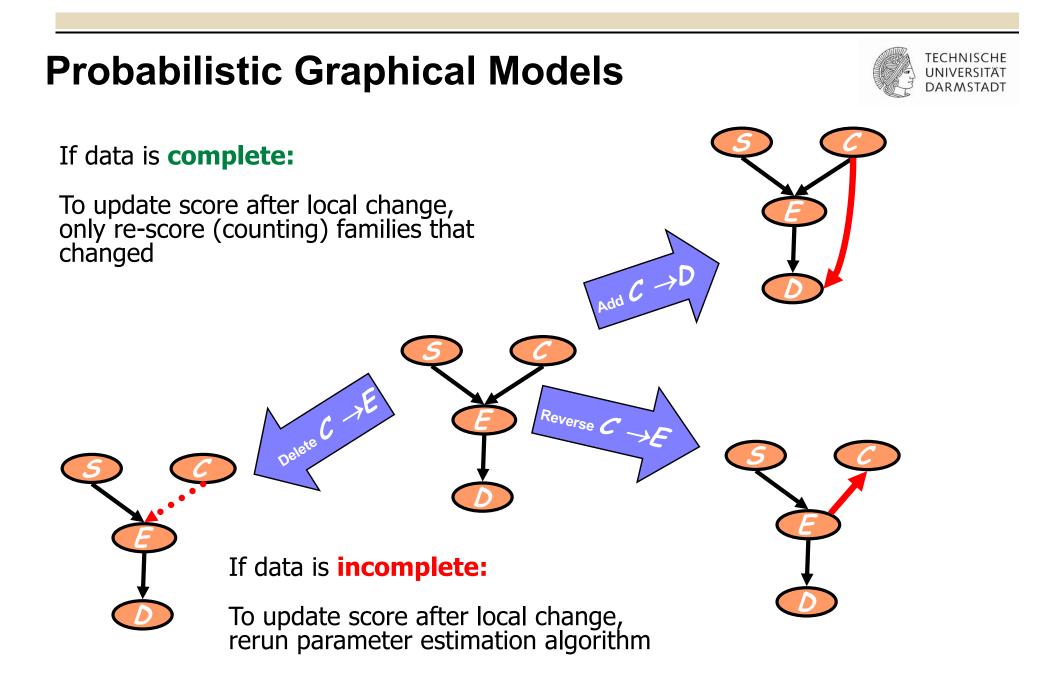
Function to optimize:  $PL(x) = \prod_{l} P(X_{l} = x_{l} \mid MB(x_{l}))$  $\log PL(x) = \sum_{i} \log P(X_i = x_i \mid MB(x_i))$  $P(X_{l} = x_{l} | MB(x_{l})) = \frac{P(x)}{P(x_{[X_{l}=0]}) + P(x_{[X_{l}=1]})}$ While effective, still hard to count in many data sets  $(X_{1}=11))$ Gr Approximate counting techniques exist (Sarkhel et al. AAAI 2016, Das et al. SDM 2016)  $\partial W_i$  $-P(X_{l} = 1 | MB(X_{l})) n_{i}(x_{[X_{l} = 1]})$  $= \sum n_{i}(x) - E_{x'_{i}}[n_{i}(x_{[X_{i}=x'_{i}]})]$ 



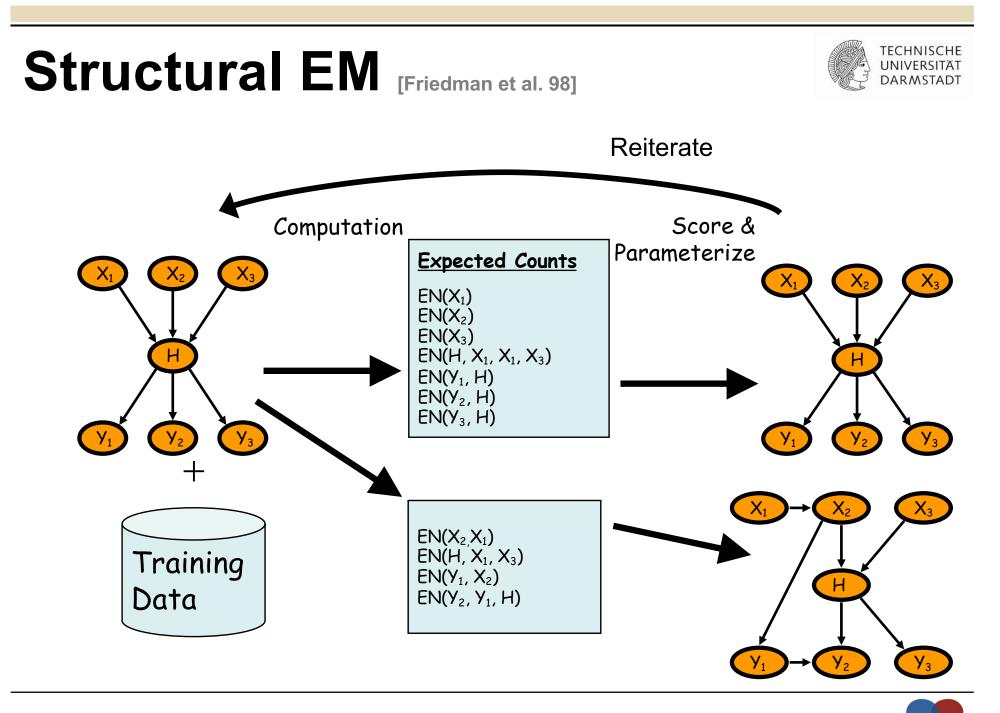


## STRUCTURE LEARNING FOR RELATIONAL MODELS









#### Inductive Logic Programming (ILP) = Machine Learning + Logic Programming



### **The Problem Specification**

[Muggleton, De Raedt JLP96]

Given:

- Examples: first-order atomic formulas (atoms), each labeled positive or negative.
- Background knowledge: definite clause (if-then rules) theory.
- Language bias: constraints on the form of interesting new rules (clauses).



### **ILP Specification (Continued)**



#### Find:

A hypothesis *h* that meets the language constraints and that, when conjoined with *B*, implies (lets us prove) all of the positive examples but none of the negative examples.

To handle real-world issues such as noise, we often relax the requirements, so that *h* need only entail significantly more positive examples than negative examples.



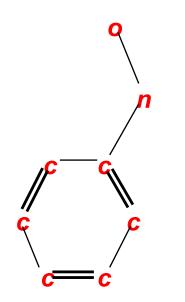
## **ILP Specification (illustrated)**



#### <u>Find</u> set of general rules

mutagenic(X) :- atom(X,A,c),charge(X,A,0.82)
mutagenic(X) :- atom(X,A,n),...

Examples E Pos(mutagenic(m1) Pos(mutagenic(m2) Neg(mutagenic(m3)



#### Background Knowledge B

 $\begin{array}{ll} molecule(m1) & molecule(m2) \\ atom(m1,a11,c) & atom(m2,a21,o) \\ atom(m1,a12,n) & atom(m2,a22,n) \\ bond(m1,a11,a12) & bond(m2,a21,a22) \end{array}$ 

....



## A Common Approach



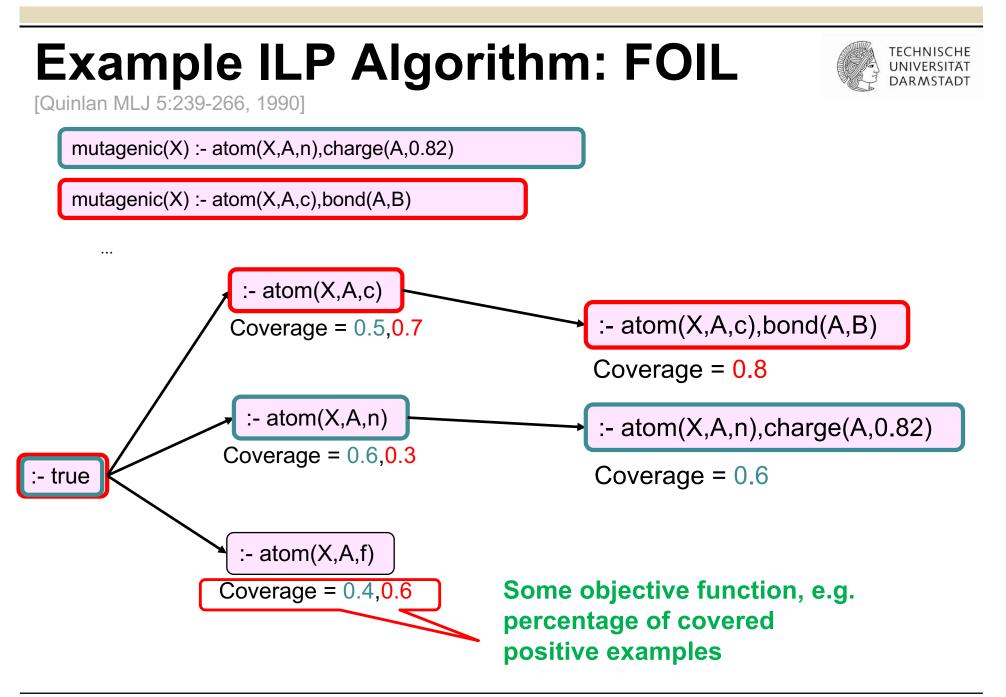
#### Use a greedy covering algorithm.

Repeat while some positive examples remain uncovered (not entailed):

- 1. Find a *good clause* (one that covers as many positive examples as possible but no/few negatives).
- 2. Add that clause to the current theory, and remove the positive examples that it covers.

ILP algorithms use this approach but vary in their method for finding a *good clause*.









## VANILLA STRUCTURE LEARNING FOR PROBABILISTIC RELATIONAL MODELS



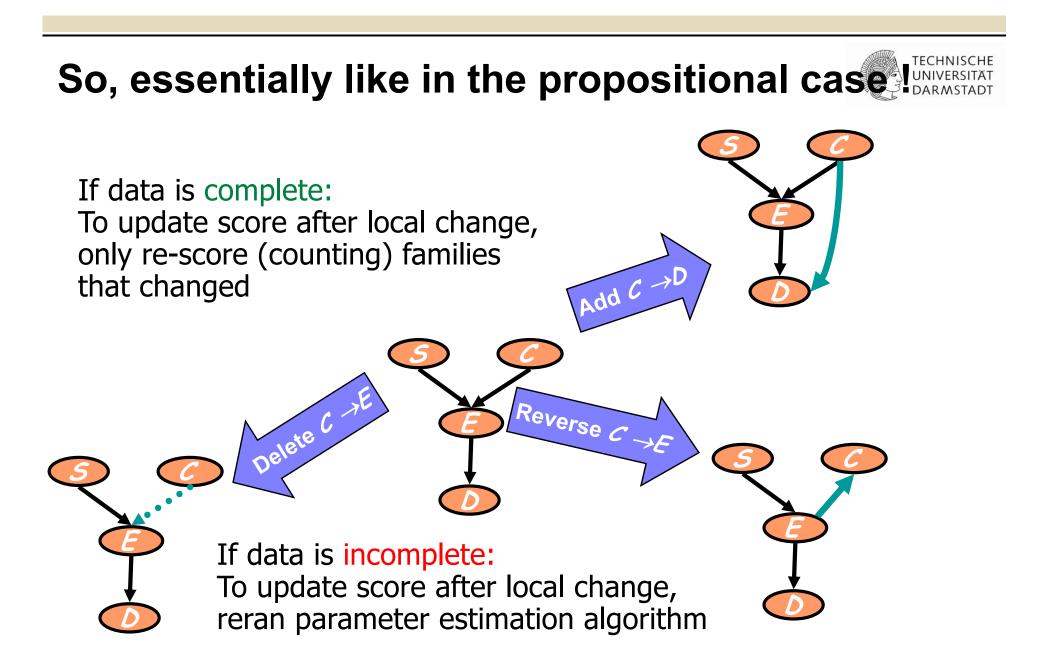
# Vanilla SRL Approach [De Raedt, Kersting ALT04] Image: De Raedt, Kersting ALT04 mutagenic(X) :- atom(X,A,n),charge(A,0.82) =0.882 mutagenic(X) :- atom(X,A,c),bond(A,B) =0.882

Traverses the hypotheses space a la ILP Replaces ILP's 0-1 covers relation by a "smooth", probabilistic one [0,1]

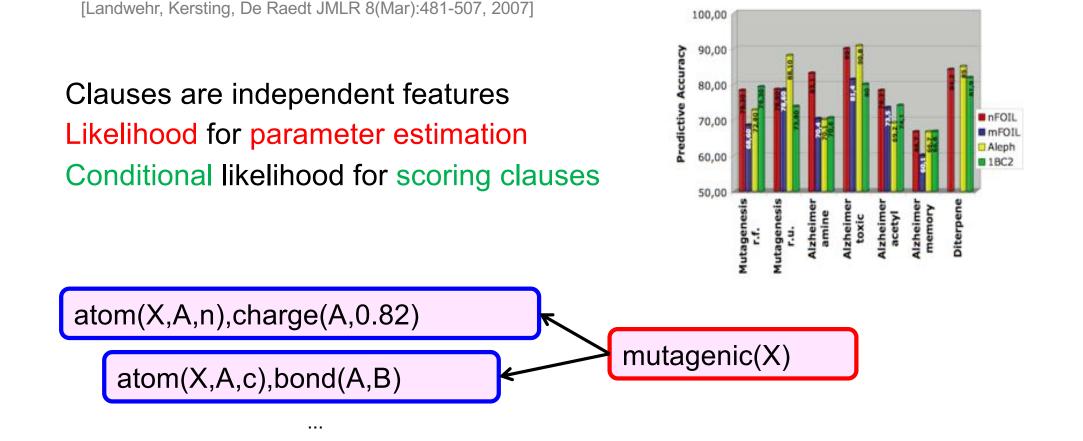
$$\operatorname{cover}(e, H, B) = P(e|H, B)$$
  
 $\operatorname{cover}(E, H, B) = \prod_{e \in E} \operatorname{cover}(e, H, B)$ 



. . .







P(truth value clauses|truth value target predicate) x P(truth value target predicate)

**nFOIL = FOIL + Naive Bayes** 



TECHNISCHE

UNIVERSITÄT DARMSTADT



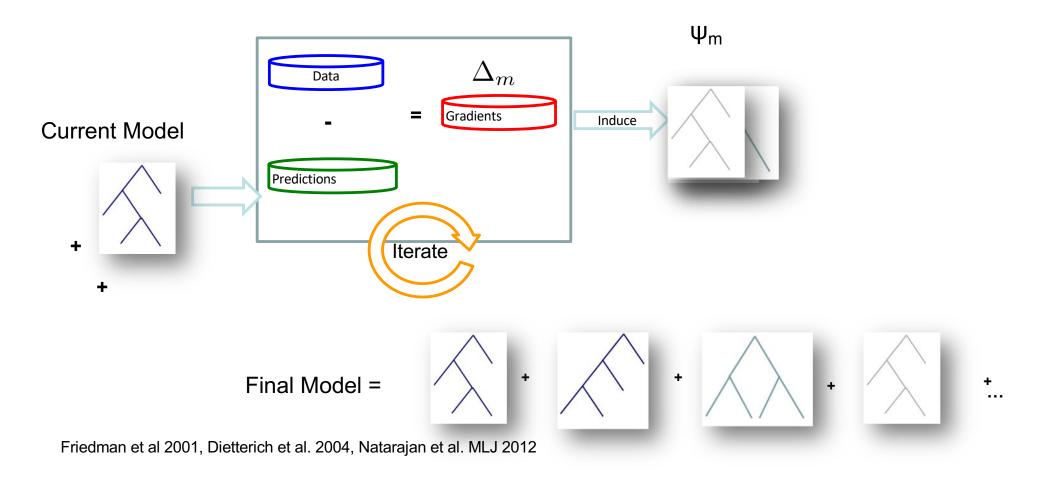
## STRUCTURE LEARNING MARKOV LOGIC NETWORKS



#### Ensemble Statistical Relational Learning, here Functional Gradient Boosting



Learn multiple weak models rather than a single complex model





### **Functional Gradients for SRL Models**

• Probability of an example

$$P(x_i = true | \mathbf{Pa}(x_i)) = \frac{e^{\psi(x_i; \mathbf{Pa}(x_i))}}{e^{\psi(x_i; \mathbf{Pa}(x_i))} + 1}$$

- Functional gradient
  - Maximize

$$LL(\mathbf{X} = \mathbf{x}) = \sum_{x_i \in \mathbf{x}} \log P(x_i | \mathbf{Pa}(x_i))$$

• Gradient of log-likelihood w.r.t ψ

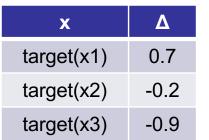
$$\Delta(x_i) = \frac{\partial \log P(\mathbf{X} = \mathbf{x})}{\partial \psi(x_i; \mathbf{Pa}(x_i))} = I(x_i = true; \mathbf{Pa}(x_i)) - P(x_i = true; \mathbf{Pa}(x_i))$$

• Sum all gradients to get final  $\boldsymbol{\psi}$ 

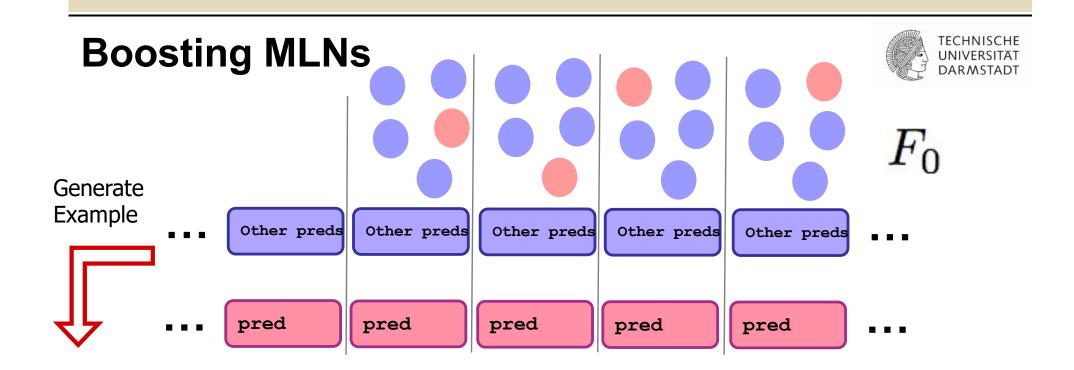
$$\psi_m = \psi_0 + \Delta_1 + \ldots + \Delta_m$$

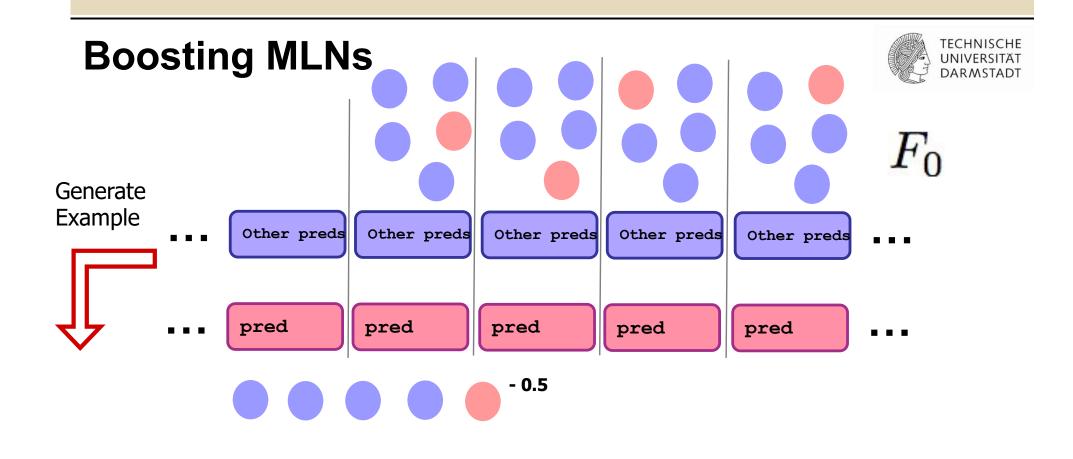
Can be extended to multiple SRL models & in presence of hidden data





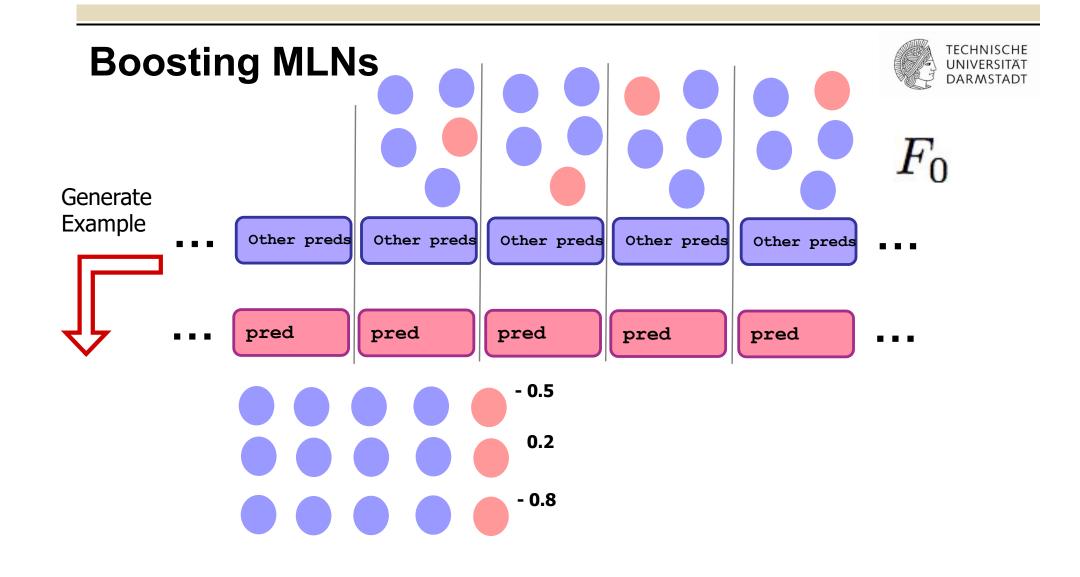
TECHNISCHE UNIVERSITÄT DARMSTADT



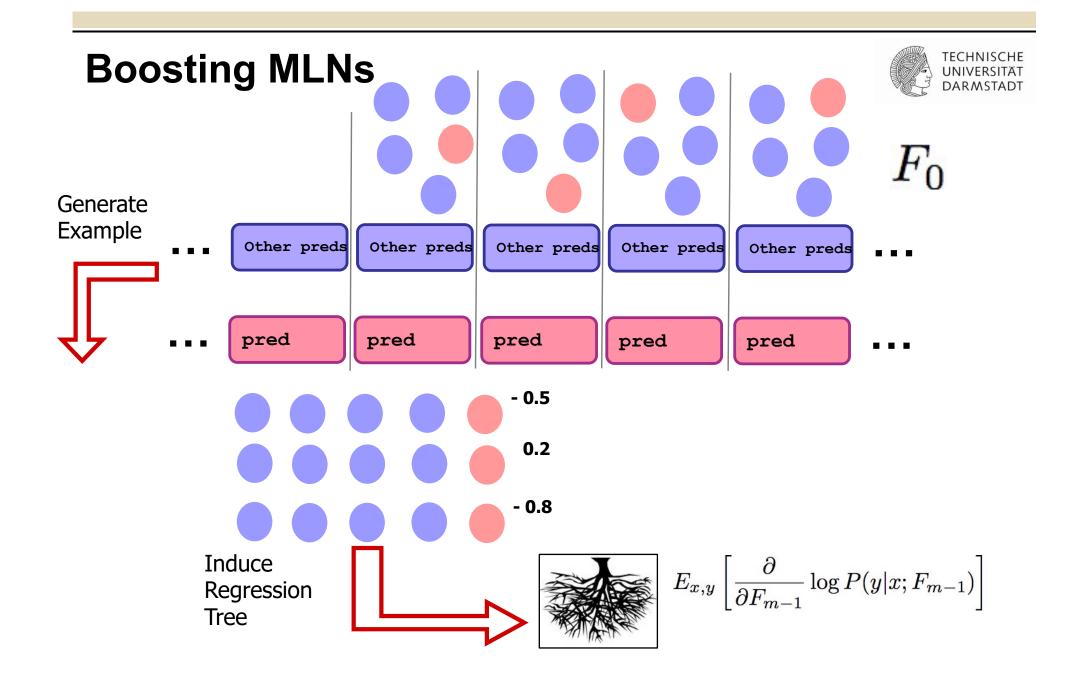


$$log P(y_i | \mathbf{x_i}) = \psi(y_i; \mathbf{x_i}) - log \sum_{y'} e^{\psi(y'; \mathbf{x_i})}$$
$$\frac{\partial log P(y_i | \mathbf{x_i})}{\partial \psi(y_i = 1 | \mathbf{x_i})} = I(y_i = 1; x_i) - \frac{e^{\psi(y_i = 1; x_i)}}{\sum_{y'} e^{\psi(y'; x_i)}}$$

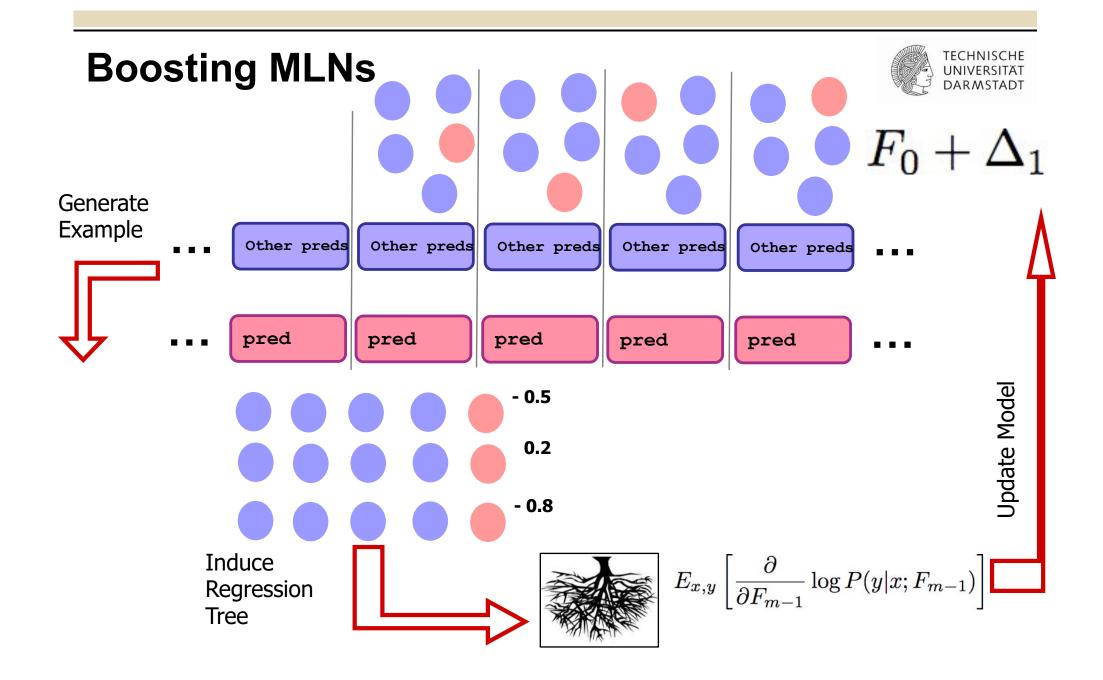




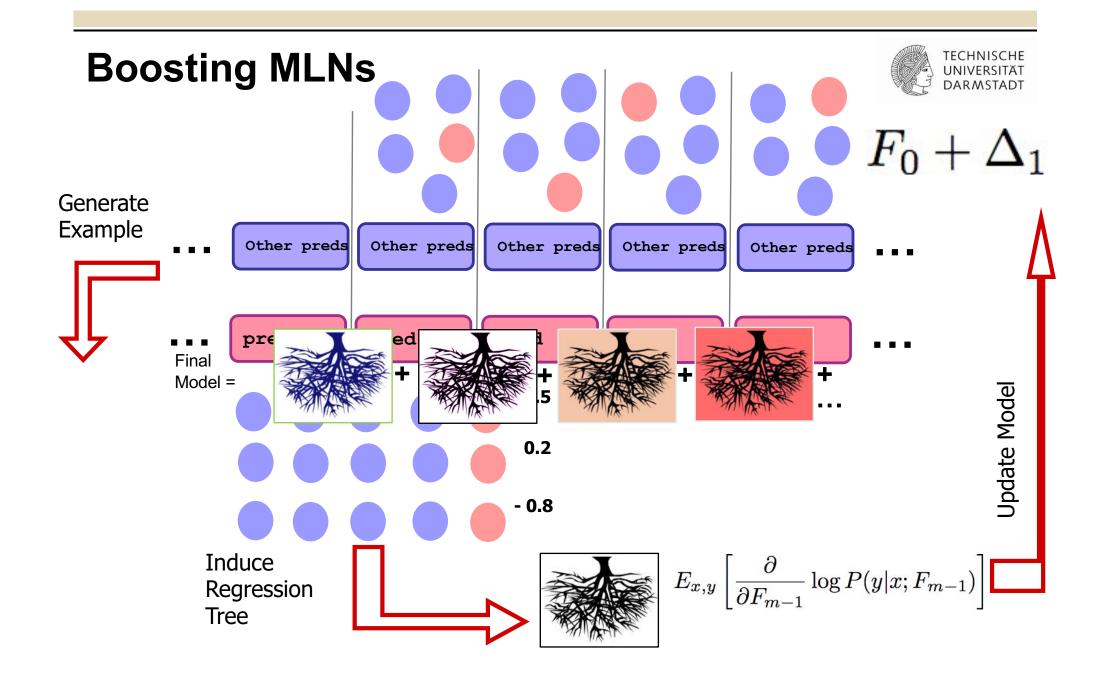














#### And recall that this applies to mathematical programs, too!

Write down SVM in "paper form." The machine compiles it into solver form.

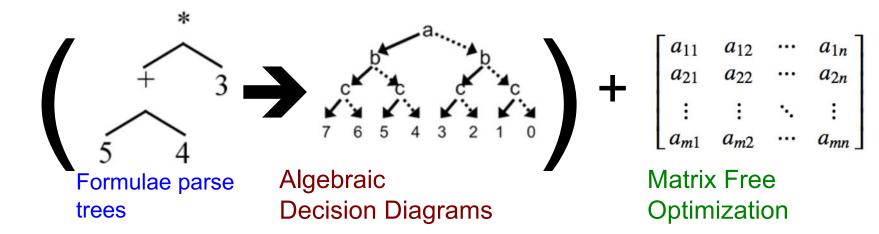
```
#QUADRATIC OBJECTIVE
minimize: sum{J in feature(I,J)} weight(J)**2 + c1 * slack + c2 * coslack;
#labeled examples should be on the correct side
subject to forall {I in labeled(I)}: labeled(I)*predict(I) >= 1 - slack(I);
#slacks are positive
subject to forall {I in labeled(I)}: slack(I) >= 0;
                           reloop
 Embedded within
                                                                              ()
 Python s.t. loops and
 rules can be used
 RELOOP: A Toolkit for Relational Convex Optimization
                                                                                margin
                                          Support Vector Machines
                                Cortes, Vapnik MLJ 20(3):273-297, 1995
```

X<sub>1</sub>

Maximum

## New field: Symbolic-numerical Al





| Problem Statistics |           |            | Symbolic IPM |       | Ground IPM   |          |
|--------------------|-----------|------------|--------------|-------|--------------|----------|
| name               | #vars     | #constr    | nnz(A)       | IADDI | time[s]      | time[s]  |
| factory            | 131.072   | 688.128    | 4.000.000    | 1819  | 6899         | 516      |
| factory0           | 524.288   | 2.752.510  | 15.510.000   | 1895  | 6544         | 7920     |
| factory1           | 2.097.150 | 11.000.000 | 59.549.700   | 2406  | 34749        | 159730   |
| factory2           | 4.194.300 | 22.020.100 | 119.099.000  | 2504  | 36248        | > 48hrs. |
|                    |           |            |              |       | >4.8x faster |          |

Applies to QPs but here illustrated on MDPs for a factory agent which must paint two objects and connect them. The objects must be smoothed, shaped and polished and possibly drilled before painting, each of which actions require a number of tools which are possibly available. Various painting and connection methods are represented, each having an effect on the quality of the job, and each requiring tools. Rewards (required quality) range from 0 to 10 and a discounting factor of 0. 9 was used used

## What have we learnt in Part II?



- Main insight for parameter estimation: parameter tighting
- Vanilla relational learning approach does a greedy search by adding/deleting literals/clauses using some (probabilistic) scoring function
- Learning many weak rules of how to change a model can be much faster
- Covers the whole AI spectrum



## Conclusions: This "Deep AI " excites industry:

RelationalAI, LogicBlox, Apple, and Uber are investing hundreds of millions of US dollars





#### Get Siri-ous.

No more evasive answers. No more coy innuendos. When you get romantic with Siri Pro, the sparks really fly.



OPTIMIZATION

And it appears in industrial strength solvers such as CPLEX and GUROBI

#### And there is a popular science books about it.

In 2016 <u>Bill Gates</u> recommended the book, alongside <u>Nick</u> <u>Bostrom's</u> <u>Superintelligence</u>, as one of two books everyone should read to understand AI.

